Industrial Utility Efficiency    

Air Compressors

As an industrial distributor for 65 years, C.H. Reed, Inc. has been providing ideas, concepts and sustainable solutions to help manage issues associated with three key areas of industrial plants: compressed air systems and equipment; assembly tools and ergonomic material handling; paint finishing and fluid handling equipment. Compressed air has always been a strong focus for C.H. Reed, and it’s a common thread running through all of its product families.
Roxane Laboratories, Inc., a subsidiary of Boehringer Ingelheim Corporation located in Columbus, Ohio, created a world-class air system that generated $61,314 per year in electrical energy cost savings (1,156,868 kWh), improved productivity and quality, and allowed the successful completion of a significant plant expansion.
This aluminum mill spends $369,000 annually in energy costs to operate their compressed air system. This system assessment recommends actions reducing annual energy costs by $120,000 and improving productivity and quality by delivering clean, dry compressed air.
A paper mill in Wisconsin reduced its’ yearly water consumption by 547.5 million gallons and reduced its’ yearly air compressor maintenance costs by $470,000.  
This article reviews two major processes in paper mills: compressed air quality and air compressor cooling.  The central air compressor room was expanded and relocated at the largest privately owned paper mill in Canada.  The compressor space was required by a plant expansion, which would occupy the original compressor space for increased production.
Compressed Air Best Practices® interviewed Mr. Sid Van der Meer and Mr. Terry Nickel from Northwest Equipment Ltd in Airdrie, Canada.
There are many applications which require a low horsepower compressor built with the technology that has been proven in larger compressors. Often these situations are not addressed well by the general compressor industry.  
This factory currently spends $735,757 annually on the electricity required to operate the compressed air system at its plant. The group of projects recommended in the system assessment will reduce these energy costs by an estimated $364,211 (49% of current use). Estimated costs for completing the recommended projects total $435,800. This figure represents a simple payback period of 14.4 months.
Compressed air leaks - every system has them.  Is a leak identification and control program economically rewarding and/or necessary? Upper management sometimes doesn’t recognize the true cost of not repairing air leaks.  Knowing the high cost of compressed air, why wouldn’t every facility with a compressed air piping system implement a continuous leak identification and repair program?
We are finding significant changes in industry with regards to which managers are involved with our discussions.
Easy-to-implement master control and monitoring systems provide crucial system information including the key performance indicators required to manage air compressors and their associated energy costs.