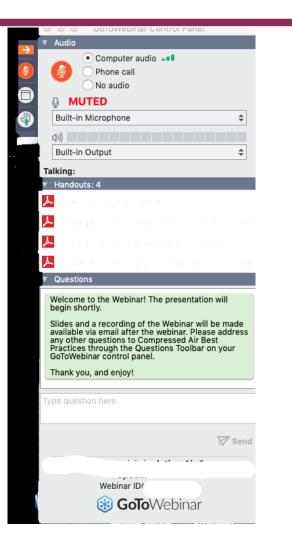
How to Identify and Eliminate Artificial Demands

Tom Taranto Data Power Services *Keynote Speaker*

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to attendees within 2 days


Sponsored by

Q&A Format

• Panelists will answer your questions during the Q&A session at the end of the Webinar.

- Please post your questions in the Questions Window in your GoToWebinar interface.
- Direct all questions to Compressed Air Best Practices® Magazine

Handouts

Disclaimer

All rights are reserved. The contents of this publication may not be reproduced in whole or in part without consent of Smith Onandia Communications LLC. Smith Onandia Communications LLC does not assume and hereby disclaims any liability to any person for any loss or damage caused by errors or omissions in the material contained herein, regardless of whether such errors result from negligence, accident, or any other cause whatsoever.

All materials presented are educational. Each system is unique and must be evaluated on its own merits.

Mark Your Calendars for the Best Practices 2024 EXPO & Conference!

October 29-31, 2024 at the Cobb Galleria Centre

SPEAK AT THE CONFERENCE

Track 1– Sustainability Through Energy/Water Conservation Measures

Track 2 – Quality, Safety and Reliability

At the end of the webinar, we are having a fun contest for a chance to win a free full conference pass valued at \$675!

SUPER EARLY BIRD RATES END AUGUST 8th

cabpexpo.com

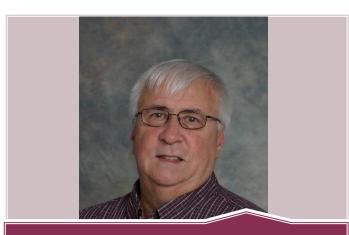
As a Speaker, you will receive complimentary access to the Conference, a \$675 value!

https://cabpexpo.com/conference/speaker-submission/

How to Identify and Eliminate Artificial Demands

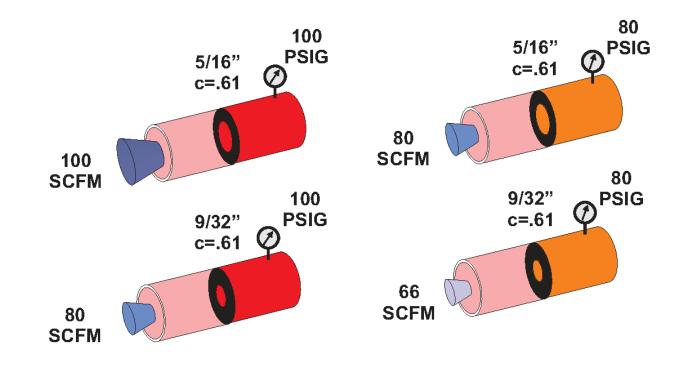
Introduction by

Compressed Air Best Practices® Magazine


Sponsored by

About the Speaker

Tom Taranto Data Power Services


- President, Data Power Services
- Member of Best Practices
 Magazines' Editorial Board
- Over 45 years of experience in the compressed air industry
- Compressed Air Challenge Instructor, AIRMaster+ Specialist instructor and UNIDO Industrial Motor Systems Efficiency Program Instructor
- Member of ASME, AFE and IFPS

Sponsored by

- Increased demand due to excessive system pressure (also known as artificial demand)
- Additional compressed air usage due to pressure levels higher than what is necessary to keep equipment operating properly.
- This is sometimes referred to as "artificial demand".

Orifice flow calculation method – Compressed Air Challenge Advanced Management (L2) System Test Method – Testing during a system assessment

DETERMINE AIRFLOW LOSS TO ARTIFICIAL DEMAND

Discharge of air through an orifice

 Orifice chart to estimate artificial demand

CAGI Handbook 6th Ed PDF Ch 8 p929

 $w = 0.5303 \frac{ACp_1}{\sqrt{T_1}}$

CAC L2 Handout H10a p3

$$Q = 424.6 \frac{ACp}{\sqrt{T_{e}}}$$

Flow ratew = lbm / secQ = scfmOrifice areaA = sq. in.A = sq. in.Orifice coeff.C = 1.0C = 0.61 $T_1 = 530 \, {}^0F$ (abs) $T_1 = 530 \, {}^0F$ (abs) $P_1 = psia$ (upstream) $P_1 = psia$ (upstream)

Units Conversion

 $w = 0.5303 \frac{lbm}{s} \frac{60 s}{1 \min} / 0.07494 \frac{lbm}{scf} = 424.6 \ scfm$

COMPRESSED AIR BEST PRACTICES

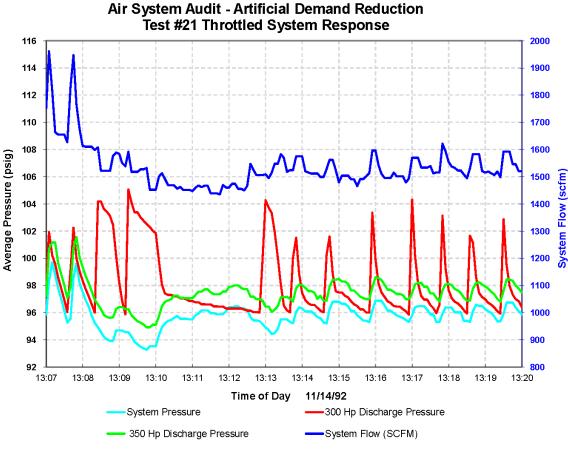
- CAC L2 Steps to find artificial demand
 - Handout H10a pp 4 & 5

Gauge			Com	pressed	d Airflow	Rate	(scfm)	for Orifi	ce Dia.	& Press	ure Lis
Pres	sure	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"	1-3/8"	1-1/2"
7	6	113	153	200	254	313	379	451	529	614	704
7	8	115	157	205	259	320	387	461	541	627	720 4
8	30	118	160	209	265	327	395	471	552	641	735
٤	32	120	164	214	270	334	404	481	564	654	751
٤	34	123	167	218	276	341	412	491 8	5 576	668 675	766
٤	86	125	170	222	282	348	421	500 DS	IQ 587	681 cfm	782
٤	88	128	174	227	287	354	429	510	599	695	798
5	0	130	177	231	293	361	437	520	611	708	813
ş	92	133	180	236	298	368	446	530	622	722	829
5	4	135	184	240	304	375	454	540	634	735	844
S	6	138	187	245	309	382	462	550	646	749	860
5	8	140	191	249	315	389	471	560	657	762	875
1	00	143	194	253	321	396	479	570	669	776	891
1	02	145	197	258	326	403	487	580	681	789	906
5 1	04	147	201	262	332	410	496	590	692	803810	922
g 1	06	150	204	267	337	417	504	600	704	817 <u>cfm</u>	937
1	08	152	208	271	343	423	512	610	716	830	953

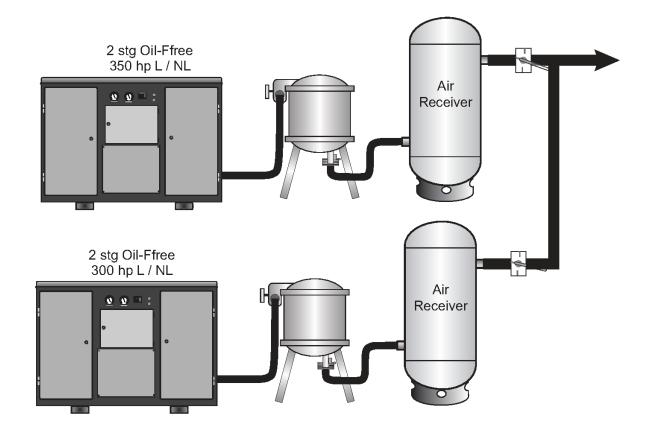
COMPRESSED AIR / VACUUM

Artificial Demand 810 cfm 105 psig \rightarrow @ 85 psig ??? cfm

- Steps to find artificial demand savings
 - **1.** Enter the table below at 105 psig (present operating pressure)
 - **2.** Find the column closest to 810 cfm (present average airflow rate)
 - **3.** Read up the column to 85 psig (new demand side target pressure)
 - 4. Read or interpolate the new airflow 675 cfm
 - 5. Subtract 810 675 cfm (present airflow rate minus new airflow rate) Airflow savings = 135 cfm (savings estimate if 100% air use is unregulated)
 - **6.** Estimate the portion of air demand that is unregulated, typ. 60% to 75%. (AIRMaster+ Software uses 60% unregulated air demand).
 - **7.** Multiply airflow reduction from the table by % unregulated air demand 135 cfm x 0.6 = 81 cfm
 - 8. Cost savings is reduced airflow rate multiplied by compressed air cost. 81 cfm x \$ 190.00 per cfm / year = \$15,390.00 annual savings

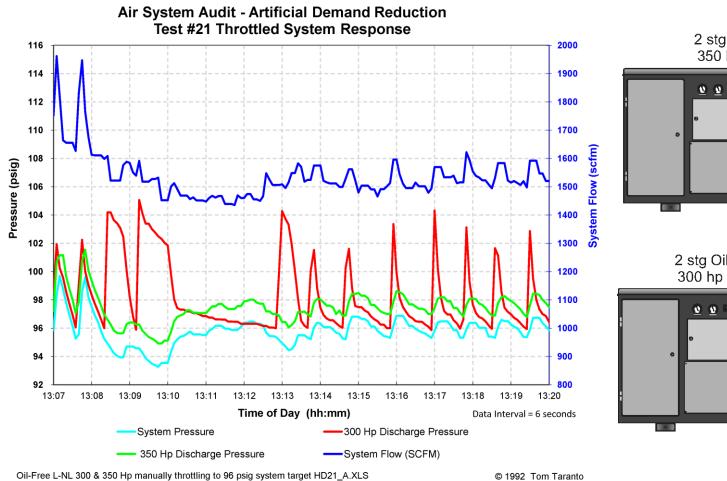

- CAC L2 Steps to find artificial demand
 - Handout H10a pp 4 & 5

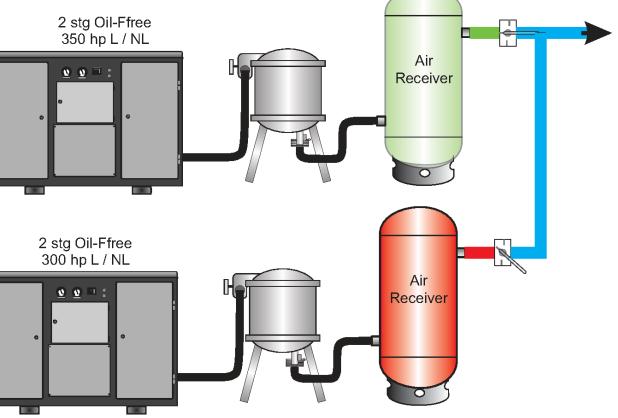
Gauge Pressure	9 3/8"	Comj 1/2"	pressed 5/8"	Airflov 3/4"	v Rate 7/8"	(scfm) 1"	for Orifi 1-1/8"	ice Dia. 1-1/4"	& Pressi 1-3/8"	ure Lis 1-1/2"
76	113	153	200	254	313	379	451	529	614	704
78	115	157	205	259	320	387	461	541	627	720 4
80	118	160	209	265	327	395	471	552	641	735
82	120	164	214	270	334	404	481	564	654	751
84	123	167	218	276	341	412	491 8	35 576	668 675	766
86	125	170	222	282	348	421	500 DS	SIQ 587	681 cfm	782
88	128	174	227	287	354	429	510	599	695	798
90	130	177	231	293	361	437	520	611	708	813
92	133	180	236	298	368	446	530	622	722	829
94	135	184	240	304	375	454	540	634	735	844
96	138	187	245	309	382	462	550	646	749	860
98	140	191	249	315	389	471	560	657	762	875
100	143	194	253	321	396	479	570	669	776	891
102	145	197	258	326	403	487	580	681	789	906
5 104	147	201	262	332	410	496	590	692	803810	922
ig 106	150	204	267	337	417	504	600	704	817 <u>cfm</u>	937
108	152	208	271	343	423	512	610	716	830	953


BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING

Testing a system's artificial demand

Oil-Free L-NL 300 & 350 Hp manually throttling to 96 psig system target HD21_A.XLS


© 1992 Tom Taranto



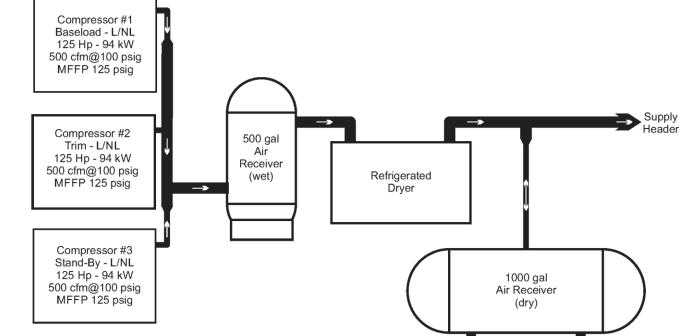
Testing a system's artificial demand

Required Primary Storage Pressure.

Uncontrolled -vs- Controlled Primary Storage Pressure.

Optimum Production Supply Pressure.

SYSTEM PRESSURE PROFILE & ARTIFICIAL DEMAND



Permissive Start-up air storage 1500 gal @ 18 psi ΔP

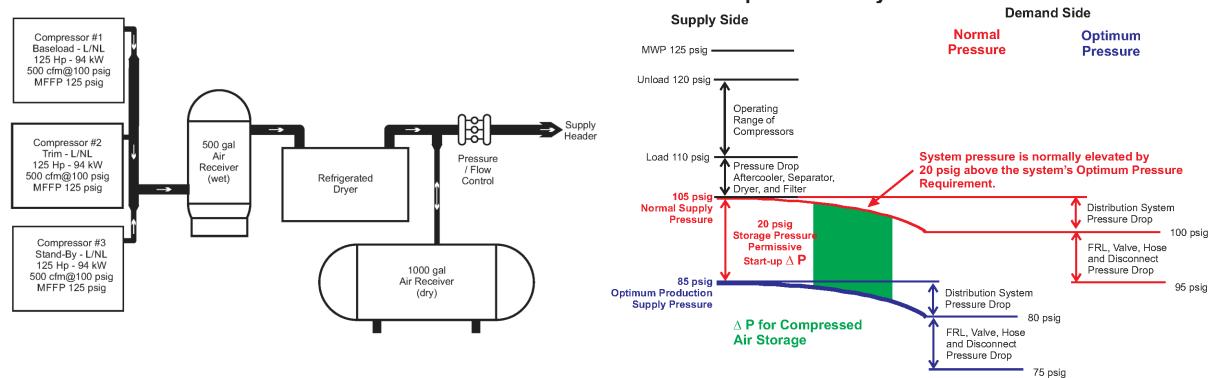
- This system is (Qty 3) 500 cfm compressors – base / trim / std-by.
- It takes 30 seconds for the std-by compressor to start & deliver air.

$$V = \frac{T (C-S) P_a}{\Delta P} \times \frac{7.48 \ gal}{1 \ scf}$$
$$V = \frac{0.5 \ (500-0) \ 14.5}{103 \ -85 \ psig} \times \frac{7.48 \ gal}{1 \ scf}$$

• V = 1506 gallons

Un-controlled Storage 20 psig above optimum pressure

- The pressure profile 20 psig storage ΔP for permissive start
- Normal supply pressure = 105 psig
- Optimum supply pressure = 85 psig
- System normal operating pressure is 20 psig higher than the optimum production pressure requirement


Compressed Air System Pressure Profile Demand Side Supply Side Normal Optimum Pressure MWP 125 psig Pressure Unload 120 psig Operating Range of Compressors Load 110 psig Pressure Drop Aftercooler, Separator, Dryer, and Filter 105 psic Distribution System Normal Supply Pressure Pressure Drop 20 psig 100 psig Storage Pressure Permissive FRL, Valve, Hose and Disconnect Start-up $\Delta \mathbf{P}$ Pressure Drop 85 psig 95 psig **Optimum Production Distribution System** Supply Pressure Pressure Drop 80 psig FRL. Valve. Hose and Disconnect Pressure Drop 75 psig

COMPRESSED AIR / VACUUM /

COOLING

Controlled Storage w/ 20 psi ΔP & 85 psig optimum target pressure

Compressed Air System Pressure Profile

Pneumatic Cylinders – Un-Controlled and Un-regulated

Pneumatic Cylinders – Controlled & Regulated.

Air Operated Double Diaphragm Pumps – Standard -vs- Stroke Shifting Control.

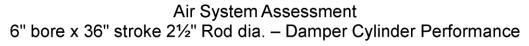
END USE EQUIPMENT & ARTIFICIAL DEMAND

Air Cylinder – Un-controlled & Un-regulated

- 415 lb(f) Cylinder force (NET)
 - 76.4 psig line pressure
 - 73.2 psig break-away pressure
 - 35.5 psig end of stroke pressure
 - 40.9 psid end of stroke refill ΔP

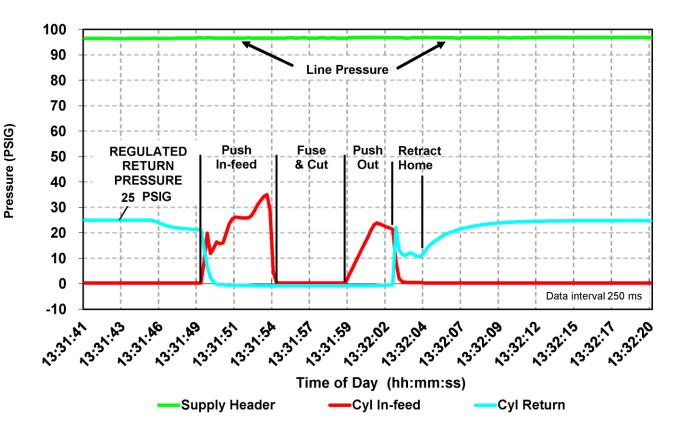
$$V = \frac{T \cdot C \cdot P_a}{\Delta P} \gg T \cdot C = \frac{P_a}{V \cdot \Delta P} = cf_{air}$$

$$cf_{air} = \frac{P_a}{V \cdot \Delta P} = \frac{14.5}{0.20 \cdot 40.9} = 1.77 \ cf$$


 $3.54 \, cf/stroke \, \cdot \, 1 \, stroke/hr = 0.059 \, cfm$

$$0.059 \frac{cf}{min} \cdot 8760 \frac{hrs}{yr} \cdot \frac{60 \min}{1 hr} = 30,010 cf/yr$$
compressed air

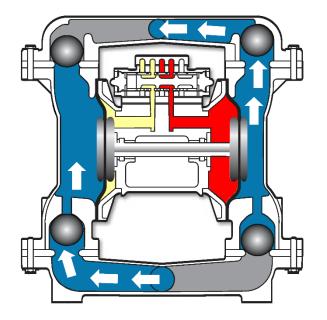
90 80 76.5 - 76.4 76.4 70 60 $A_{CE} = 28.27 \ in^2$ Artificial Pressure (PSIG) 50 $F_{CE} = 1,165 \, lb(f)$ 41.2 Demand $A_{RF} = 23.37 \ in^2$ $\Delta P = 40.9 \text{ psig}$ 40 $F_{RE} = 715 \, lb(f)$ $F_{NET} = 415 \, lb(f)$ 30 With zero back-pressure $F_{@76.4} = 2,160 \, lb(f)$ 30.6 20 $415 \, lb(f) = 14.7 \, psig$ 10 0 18:05:06 18:05:10 8:05:02 8:05:04 8:05:08 18:05:12 18:15:00 8:15:05 18:15:12 18:15:02 18:15:14 8:05:00 8:15:07 8:15:09 Time of Day on 9/14/94 (hh:mm:ss) © 1994 Data Power Services, LLC Data interval 250 ms PPG MICL 3 -Rod End -Cap End

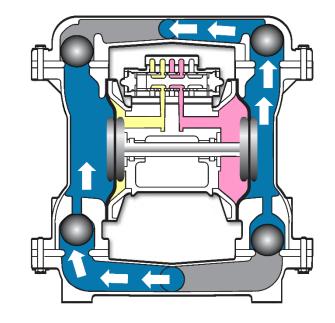

COMPRESSED AIR / VACUUM /

COOLING

Air Cylinder – Controlled & Regulated

- Packaging shrink-wrapper
 - Line Pressure = 97 psig
 - Push in-feed & depressurize
 - Dwell during wrapper fuse & cut
 - Push out to conveyor & return
 - Return home & hold with regulated air pressure 25 psig
- Artificial demand???

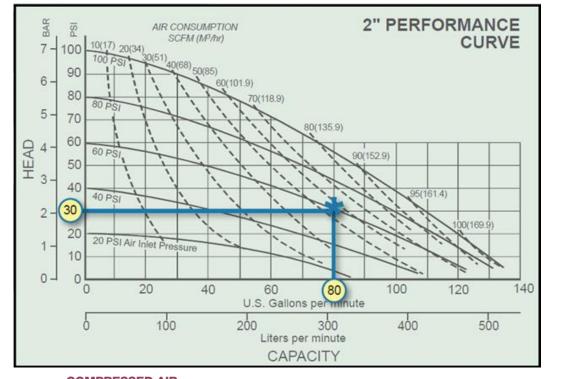


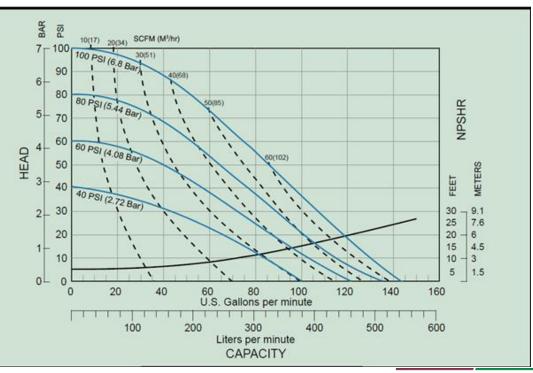

Air Operated Double Diaphragm Pump

AODD Standard -vs- Stroke Shifting Control

Standard Control

Stroke Shifting Control


Air Operated Double Diaphragm Pump


AODD Standard -vs- Stroke Shifting Control

Standard Control

55 cfm @ 60 psig

Stroke Shifting Control 41 cfm @ 68 psig

COMPRESSED AIR ST PRACTICES airbestpractices.com BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING

Artificial Demand

Minimize loss, reduce system air consumption, & improve productivity.

Technical Case – better performance

- Provide stable consistent pressure
- Eliminate unnecessary high pressure.
- Maintain lowest optimum pressure.
- Apply storage for peak demands

Business Case – economic benefits

- Savings reduced air consumption.
- Cost of controls, storage volume, system modifications.
- Savings of reduced rework & scrap.
- Benefit of improved productivity.

Caterpillar Fuel Systems Case Study

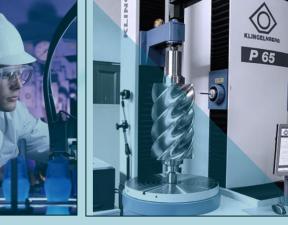
- 5.28 gigawatt-hour / yr. energy reduction
- \$226,000 kWh / yr. savings
- Cost \$ 1 million 4.4 yr. payback
- Critical HIP area 105 psig 5% of demand
- Remaining production 98 psig target
- 1300 cfm Artificial Demand Plant wide
- Energy 40% / production unit
- HIP 18% production output
- Diesel Rental \$42,000 / yr. savings
- Diesel Fuel \$13,000 / yr. savings

About the Speaker

Dave George Kaishan • President, Kaishan

• Certified DOE AirMaster+

 37 years of experience in the air compressor industry


Sponsored by

Compressed Air Best

Practices

Webinar Dave George – Kaishan USA DOE Airmaster+

Kaishan Compressor:

- ✤ 3rd largest compressor manufacturer in the world
- USA HQ and manufacturing plant in Loxley, AL USA
- Members of the Compressed Air and Gas Institute (CAGI)
- Participants in the CAGI Performance Verification Program
- Performance Verification on published flow and power.
- CAGI has standardized Data Sheets for use in evaluating real world performance

Current Status:

- You have made significant progress on eliminating artificial demand by reducing supply header pressure, fixing leaks and reducing pressure at the point of use.
- You notice the existing 250HP is running differently. It is loading and unloading more frequently.
- Existing machine is re-set to 125 psig, rather than the 135 psig previous setting.
- You call in the compressor service company who verifies the controls (load no load) are working properly.
- You have your service company do a supply side assessment on the current operating profile on the existing compressor.
- You have a budget for a replacement compressor this year.
- What do I do next?
- Find the most efficient 250 HP and buy it? NOT THAT SIMPLE!

COMPRESSOR DATA SHEET

Rotary Compressor: Fixed Speed

COMPRESSOR DATA SHEET

TOD COMPRESSED AND

Rotary Compressor: Variable Frequency Drive

MODEL DA

	MODEL DATA - FOR COMPRESSED AIR					
1	Manufacturer: Kaishan Compressor	USA				
	Model Number: KRSP250-125	Date:	3/10/2020			
2	X Air-cooled Water-cooled	Туре:	Screw			
	X Oil-injected Oil-free	# of Stages:	1			
	Rated Capacity at Full Load Operating					
3*	Pressure ^{a, e}	1189	acfm ^{a,e}			
4	Full Load Operating Pressure ^b	125	psig b			
5	Maximum Full Flow Operating Pressure ^c	125	psig			
6	Drive Motor Nominal Rating	250	hp			
7	Drive Motor Nominal Efficiency	96.2	percent			
8	Fan Motor Nominal Rating (if applicable)	7.5 & 2	hp			
9	Fan Motor Nominal Efficiency	91.0 & 87.5	percent			
10*	Total Package Input Power at Zero Flow ^e	44.8	кW ^e			
11	Total Package Input Power at Rated Capacity and Full Load Operating Pressure ^d	215.5	kW^d			
12*	Specific Package Input Power at Rated Capacity and Full Load Operating Pressure	18.1	kW/100 cfm ^e			

	MODEL DATA - FOR CO	MPRESSED AIR	
1	Manufacturer: Kaishan Compressor	USA	
	Model Number: KRSP-250-125 VSD	Date:	3/10/2020
2	X Air-cooled Water-cooled	Туре:	Screw
	X Oil-injected Oil-free	# of Stages:	1
3	Rated Operating Pressure	125	psig ^b
4	Drive Motor Nominal Rating	250	hp
5	Drive Motor Nominal Efficiency	96.2	percent
6	Fan Motor Nominal Rating (if applicable)	1.5 & 7.5	hp
7	Fan Motor Nominal Efficiency	87.5 & 91.0	percent
	Input Power (kW)	Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d
	213.6 Max	1147	18.6
8*	147.4	792	18.6
8*	128.2	665	19.3
	106.8	539	19.8
	85.4	413	20.7
	64.1 Min	275	23.3
9*	Total Package Input Power at Zero Flow ^{c, d}	0.0	kW

https://www.cagi.org/pdfs/cagirotarydirectory.pdf

29

COMPRESSOR DATA SHEET

Federal Uniform Test Method for Certain Air Compressors Not Applicable

Rotary Compressor: Fixed Speed

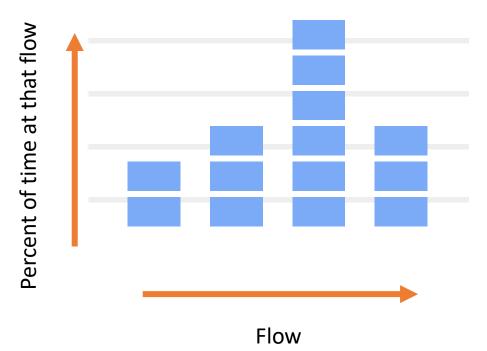
	MODEL DATA - FOR CO	MPRESSED AIR	
1	Manufacturer: Kaishan Compressor	USA	
	Model Number: KRSP2-250-125	Date:	7/12/2021
2	X Air-cooled Water-cooled	Туре:	Screw
	X Oil-injected Oil-free	# of Stages:	2
	Rated Capacity at Full Load Operating Pressure		
3*	a, e	1339.0	acfm ^{a,e}
4	Full Load Operating Pressure ^b	125	psig
5	Maximum Full Flow Operating Pressure	125	psig ^c
6	Drive Motor Nominal Rating	250	hp
7	Drive Motor Nominal Efficiency	96.2	percent
8	Fan Motor Nominal Rating (if applicable)	7.5 & 2.0	hp
9	Fan Motor Nominal Efficiency	91.0 & 87.5	percent
10*	Total Package Input Power at Zero Flow ^e	39.4	kW ^e
11	Total Package Input Power at Rated Capacity and Full Load Operating Pressure ^d	220.90	kW^d
12*	Specific Package Input Power at Rated Capacity and Full Load Operating Pressure ^e	16.50	kW/100 cfm ^e

COMPRESSOR DATA SHEET

Federal Uniform Test Method for Certain Air Compressors Not Applicable

Rotary Compressor: Variable Frequency Drive

MODEL DATA - FOR COMPRESSED AIR


1	Manufacturer: Kaishan Compressor	USA		
	Model Number: KRSP2-250-125 VSD		Date:	07/12/21
2	X Air-cooled Water-cooled		Type:	Screw
	X Lubricated Oil Free		# of Stages:	2
3*	Full Load Operating Pressure ^b	125		psig
4	Drive Motor Nominal Rating	250		hp
5	Drive Motor Nominal Efficiency	96.2		percent
6	Fan Motor Nominal Rating (if applicable)	7.5 &1.5		hp
7	Fan Motor Nominal Efficiency	87.5 & 91.0		percent
	Input Power (kW)	Capacity (acfm) ^{a,d}		Specific Power <u>kW/100 acfm</u>) ^d
	225.2	1339	(16.82
8*	184.7	1071		17.25
	159.9	937		17.07
	119.4	670		17.82
	96.8	536		18.06
9*	Total Package Input Power at Zero Flow ^{c, d}	0.0		kW

KAISHAN

https://www.cagi.org/pdfs/cagirotarydirectory.pdf

Measured Data

- Use Histogram function to turn your flow data into a maximum of five data buckets
- Use that data in the calculator

			Energy Cost C	alculator		
	Operating Weeks Per Year	52	Shift #	CFM	Shift Hours	Days/Wk
	Energy Cost (\$/kW*hr)	0.08	1	1100	10	6
	Customer	XYZ Corp	2	900	8	6
	Reference	Plant #2	3	750	6	6
	Notes		4	500	5	1
		This analysis is approximate and	5	250	5	1
		absolutely no guarantees apply		200	Total Hours (must <= 168)	154
	Compressor Information	#1	#2	#3	#4	101
	Model/Name	KRSP-250-125	KRSP-250VSD	KRSP2-250	KRSP2-250VSD	
Charles	Full Load Flow (cfm)	1189	1147	1339	1339	
Single	Full Load Power (kW)	215.5	213.6	220.9	225.2	
stage,	Control Type	Modulation	Variable Speed	Modulation	Variable Speed	
modulation	% Load	Hours Per Week				
control	0%	0				
control	5% 10%	0	-	4 -		
	15%	0	-	· -		
	20%	0		1 -		
	25%	5		1 -	1 1	
	30%	0		1 1	1 1	
	35%	0		1 1	1 [
	40%	0				
	45%	5				
	50%	0	-	4 4		
	55%	0	4 –	4 -		
	<u>60%</u> 65%	0 36	4 –	1 -		
	70%	0		1 -		
	75%	0		1 -	1 1	
	80%	48	Η Η	1 1	1 1	
	85%	0		1 1	1 1	
	90%	0		1 1	1 1	
	95%	60] [
	100%	0		ļ		
AISHAN	Total Power	1,656,561				
	Annual Energy Cost					

			Energy Cost C	alculator		
	Operating Weeks Per Year	52	Shift #	CFM	Shift Hours	Days/Wk
Add a 5,000 gallon tank and use L/UL control? Kod 100 100 10 Yank: \$30K \$30K 0 0 100 100 10 Yank: \$30K Yank: \$30K Yank 0 100 100 10 Yank: \$30K Yank: \$30K Yank 0 100 10 10 Yank: \$30K Yank: \$30K Yank Yank 100 10 10	10	6				
	8	6				
	Reference	Plant #2	3	750	6	6
	Notes		4	500	5	1
			5	250	5	1
					Total Hours (must <= 168)	154
		KRSP-250-125				
Add a 5,000						
gallon tank						
-	Control Type	Load/No Load (5)	Variable Speed	Modulation	Variable Speed	
	0% 5% 10% 15% 20% 35% 40% 45% 50% 55%	0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
AISHAN	65% 70% 75% 80%	36 0 0 48				

			Energy Cost C	alculator		
	Compressor Information Model/Name Full Load Flow (cfm) Full Load Power (kW) Control Type % Load 0% 5% 10% 15% 20%	52	Shift #	CFM	Shift Hours	Days/Wk
What about a VSD control? VSD Adds \$25K	Energy Cost (\$/kW*hr)	0.08	1	1100	10	6
	Customer	XYZ Corp	2	900	8	6
	Reference	Plant #2	3	750	6	6
	Notes		4	500	5	1
		This analysis is approximate and	5	250	5	1
		absolutely no guarantees apply			Total Hours (must <= 168)	154
	Compressor Information	#1	#2	#3	#4	-
	· ·	KRSP-250-125	KRSP-250VSD	KRSP2-250	KRSP2-250VSD	
		1189	1147	1339	1339	
/hat about a		215.5	213.6	220.9	225.2	
(SD control)		Load/No Load (5)	Variable Speed	Modulation	Variable Speed	
SD CONTION!						
		Hours Per Week	Hours Per Week			
		0	0	_	Щ Ц	
		0	0	-	H H	
		0	0	-	H H	
		0	0			
shha Q2V	25%	5	5		h H	
	30%	0	0		h H	
\$25K	35%	0	0		h H	
2231	40%	0	0		n I	
	45%	5	5			
	50%	0	0		ll l	
	55%	0	0	-	₽ ₽	
	60%	0	0	-	₩ 4	
	<u>65%</u> 70%	36 0	0 36	-	₩ ⊢	
	75%	0	0	-	H H	
	80%	48	48	-	H H	
	85%	0	0			
	90%	0	0		m H	
	95%	60	0		m H	
	100%	0	60		Π 3	
	Total Power	1,536,287	1,433,551	Г		
	Annual Energy Cost	\$122,903	\$114,684			

COMPRESSOR DATA SHEET

Federal Uniform Test Method for Certain Air Compressors Not Applicable

Rotary Compressor: Fixed Speed

MODEL DATA - FOR COMPRESSED AIR

1	Manufacturer: Kaishan Compressor	USA	
	Model Number: KRSP2-250-125	Date:	7/12/2021
2	X Air-cooled Water-cooled	Type:	Screw
	X Oil-injected Oil-free	# of Stages:	2
	Rated Capacity at Full Load Operating Pressure		
3*	a, e	1339.0	acfm ^{a,e}
4	Full Load Operating Pressure ^b	125	b psig
5	Maximum Full Flow Operating Pressure	125	psig ^c
6	Drive Motor Nominal Rating	250	hp
7	Drive Motor Nominal Efficiency	96.2	percent
8	Fan Motor Nominal Rating (if applicable)	7.5 & 2.0	hp
9	Fan Motor Nominal Efficiency	91.0 & 87.5	percent
10*	Total Package Input Power at Zero Flow ^e	39.4	кW ^e
11	Total Package Input Power at Rated Capacity and Full Load Operating Pressure ^d	220.90	kW^d
12*	Specific Package Input Power at Rated Capacity and Full Load Operating Pressure ^e	16.50	kW/100 cfm ^e

COMPRESSOR DATA SHEET

Federal Uniform Test Method for Certain Air Compressors Not Applicable

Rotary Compressor: Variable Frequency Drive

MODEL DATA - FOR COMPRESSED AIR

1	Manufacturer: Kaishan Compressor l	JSA		
	Model Number: KRSP2-350-125 VSD		Date:	07/12/21
2	X Air-cooled Water-cooled		Туре:	Screw
	X Lubricated Oil Free		# of Stages:	2
3*	Full Load Operating Pressure	125		psig
4	Drive Motor Nominal Rating	350		hp
5	Drive Motor Nominal Efficiency	96.2		percent
6	Fan Motor Nominal Rating (if applicable)	15&4		hp
7	Fan Motor Nominal Efficiency	91.7&89.1		percent
	Input Power (kW)	Capacity (acfm) ^{a,d}		Specific Power <u>kW/100 acfm</u>) ^d
	322.7	1896		17.02
8*	264.6	1517		17.44
	229.1	1327		17.26
	171.0	948		18.04
	138.8	758		18.31
9*	Total Package Input Power at Zero Flow ^{c, d}	0.0		kW

https://www.cagi.org/pdfs/cagirotarydirectory.pdf

			Energy Cost C	alculator		
	Operating Weeks Per Year	52	Shift #	CFM	Shift Hours	Days/Wk
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6				
		6				
	Reference	Plant #2	3	750	6	6
	Notes		4	500	5	1
			5			1
		absolutely no guarantees apply	-		-	154
	Compressor Information	#1	#2	#3		-
		KRSP-250-125	KRSP-250VSD	KRSP2-250	KRSP2-250VSD	
	Full Load Flow (cfm)	1189	1147	1339	1339	
	· · ·	215.5				
			Variable Speed			
			•			
What about a						
			•	*		
Two Stage		-	÷	÷	1 1	
-			0	-		
more enicient				-		
compressor?		•		Ţ		
compressor:			-			
		-	÷			
		-				
	50%	0	0	0		
Tive Change			÷.			
Two Stage			-			
additional						
auditional						
cost \$35K		-				
2032 9331				60		
				0		
			-		4 4	
	100%	0	60	0	1 L	
AISHAN	Total Power	1,536,287	1,433,551	1,710,729		
	Annual Energy Cost	\$122,903	\$114,684	\$136,858		

		Energy Cost (
Operating Weeks Per Year	52	Shift #	CFM	Shift Hours	Days/\
Energy Cost (\$/kW*hr)	0.08	1	1100	10	6
Customer	XYZ Corp	2	900	8	6
Reference	Plant #2	3	750	6	6
Notes		4	500	5	1
	This analysis is approximate and	5	250	5	1
	absolutely no guarantees apply	J	250	Total Hours (must <= 168)	154
Compressor Information	#1	#2	#3	10tal Hours (must <= 168) #4	154
Model/Name	KRSP-250-125	KRSP-250VSD	KRSP2-250	KRSP2-250VSD	
Full Load Flow (cfm)	1189	1147	1339	1339	
Full Load Power (kW)	215.5	213.6	220.9	225.2	
Control Type	Load/No Load (5)	Variable Speed	Load/No Load (5)	Variable Speed	
control type		valiable speed		valiable speed	
% Load	Hours Per Week	Hours Per Week	Hours Per Week		
0%	0	0			
5%	0	0	0		
10%	0	0	0		
15%	0	0	0		
20%	0	0	5		
25%	5	5	5		
30%	0	0	0		
35%	0	0	0		
40%	0	0	5		
45%	5	5	0		
50%	0	0	0	h H	
55%	0	0	0	1 H	
60%	0	0	36	1 -	
65%	36	0	0	-	
70%	0	36	48	-	
75%	0	0	0	-	
80%	48	48			
85%	48 0	0	60		
90%	0	0	0	Η Η	
90%	60		-	H -	
95%	0	<u> </u>	0	₩ ⊢	
	U	OU	U		
100%					
Total Power	1,536,287	1,433,551	1,493,916		

Tank: \$30K

			Energy Cost C	alculator		
	Operating Weeks Per Year	52	Shift #	CFM	Shift Hours	0
	Energy Cost (\$/kW*hr)	0.08	1	1100	10	
	Customer	XYZ Corp	2	900	8	
	Reference	Plant #2	3	750	6	
	Notes		4	500	5	
		This analysis is approximate and	5	250	5	
		absolutely no guarantees apply	5	230	Total Hours (must <= 168)	
	Compressor Information	#1	#2	#3	#4	
	Model/Name	KRSP-250-125	KRSP-250VSD	KRSP2-250	KRSP2-250VSD	
	Full Load Flow (cfm)	1189	1147	1339	1339	
	Full Load Power (kW)	215.5	213.6	220.9	225.2	
	Control Type	Load/No Load (5)	Variable Speed	Load/No Load (5)	Variable Speed	
	control type		Valiable Speed		valiable speed	
	% Load	Hours Per Week	Hours Per Week	Hours Per Week	Hours Per Week	
	0%	0	0	0	0	
	5%	0	0	0	0	
	10%	0	0	0	0	
	15%	0	0	0	0	
	20% 25%	0	0	5	5	
hat about a	30%	0	0	0	0	
	35%	0	0	0	0	
D control?	40%	0	0	5	5	
	45%	5	5	0	0	
	50%	0	0	0	0	
	55%	0	0	0	0	
	60%	0	0	36	36	
SD adds	65%	36	0	0	0	
	70%	0	36	48	48	
30K	75%	0	0	0	0	
	80%	48	48	0	0	
	85%	0	0	60	60	
	90%	0	0	0	0	
	95%	60	0	0	0	
	100%	0	60	0	0	
ISHAN	Total Power	1,536,287	1,433,551	1,493,916	1,333,580	
	Annual Energy Cost	\$122,903	\$114,684	\$119,513	\$106,686	

			Energy Cost C	alculator		
	Operating Weeks Per Year	· 52	Shift #	CFM	Shift Hours	Days/V
an You lower	Energy Cost (\$/kW*hr)	0.08	1	1100	10	6
	Customer	XYZ Corp	2	900	8	6
our plant	Reference	Plant #2	3	750	6	6
-						
ressure to	Notes	This analysis is approximate and	4	500	5	1
00 psig?		absolutely no guarantees apply	5	250	5	1
00 00.0					Total Hours (must <= 168)	154
	Compressor Information	#1	#2	#3	#4	
	Model/Name	KRSP2-200-100	KRSP2-200-100	KRSP2-200-100VSD	KRSP2-250VSD	
	Full Load Flow (cfm)	1178	1178	1121	1339	
	Full Load Power (kW)	181.5	181.5	181.8	225.2	
		Modulation	Load/No Load (5)	Variable Speed	Variable Speed	
	Control Type	Wouldtion	LOAU/NO LOAU (3)	Vallable Speed	Vallable Speed	
	% Load	Hours Per Week	Hours Per Week	Hours Per Week	Hours Per Week	
	0%	O	0	0	0	
	5%	0	0	0	0	
	10%	0	0	0	0	
low mayba	15%	0	0	0	0	
low maybe	20% 25%	0	0	0	5	
ou can use a	30%	0	0	0	0	
	35%	0	0	0	0	
naller HP	40%	0	0	0	5	
	45%	5	5	5	0	
200) two	<u> </u>	0	0	0	0	
age	60%	0	0	0	36	
uge	65%	36	36	0	0	
ompressor	70%	0	0	36	48	
	75%	0	0	0	0	
	80%	<u>48</u> 0	48	0	0	
	<u> </u>	0	0	<u>48</u> 0	60 0	
	95%	60	60	0	0	
	100%	0	0	60	0	
	Total Power	1,395,201	1,293,903	1,241,456	1,333,580	
	Annual Energy Cost	\$111,616	\$103,512	\$99,316	\$106,686	

39

Calculator Resource on our Website

INDUSTRIES

PRODUCTS

PARTS AND SERVICE

AIR COMPRESSORS FOR THE BIG DOGS

Unrivaled performance with up to 35% energy cost savings.

LEARN MORE

KAISHAD

krst

ENGINEERING THE FUTURE

DATA SHEETS VIDEOS WARRANTY

WEBINARS

RESOURCES

CALCULATORS

CASE STUDIES

BLOG

ABOUT US

CONTACT US

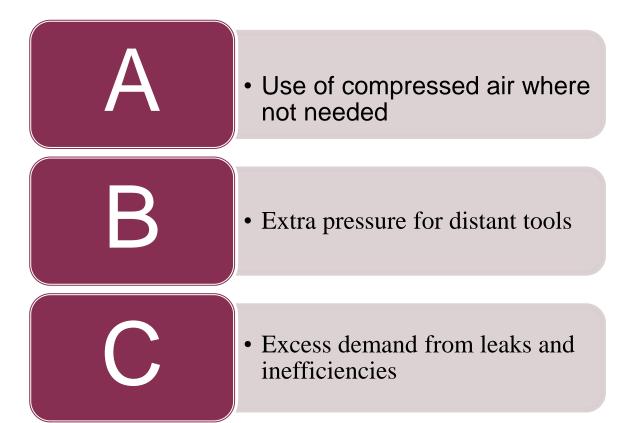
WHITEPAPERS

Conclusions:

- Every system is different
- Every installation is different
- Don't just look at the basics details matter!
- Work with an air expert who knows what they are doing.
- I'll be glad to help you with your analysis – contact me.

Ihank you

Dave George – Kaishan USA 239-213-8797 dgeorge@kaishanusa.com www.kaishanusa.com

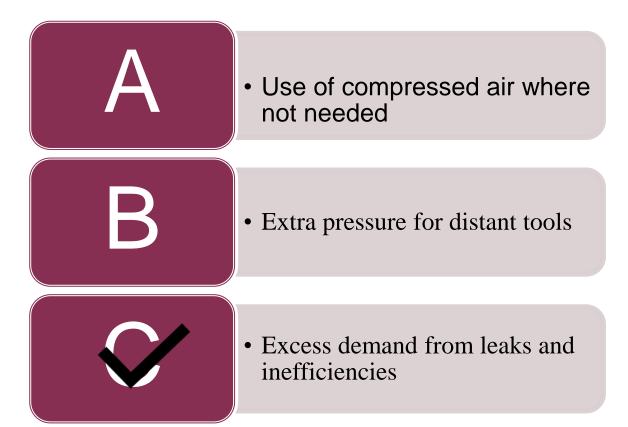

41

Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What does artificial demand in a compressed air system refer to?


*By entering you are giving permission to announce your name if you are a winner

Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What does artificial demand in a compressed air system refer to?

*By entering you are giving permission to announce your name if you are a winner

How to Identify and Eliminate Artificial Demands Q&A

Please submit any questions through the Question Window on your GoToWebinar interface, directing them to Compressed Air Best Practices Magazine. Our panelists will do their best to address your questions and will follow up with you on anything that goes unanswered during this session. **Thank you for attending!**

Sponsored by

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to Attendees within 2 days.

May 2024 Webinar Sensors for Compressed Air Systems: Data Management and Analysis

Andrew Smith SMARTCAir Keynote Speaker

Thursday, May 23, 2024– 2:00 PM EST Register for free at

www.airbestpractices.com/webinars

Sponsored by

