Industrial Utility Efficiency    

Standards

For an organization to prove that it meets the standard it has to undergo a management system audit, either internal or external. The question, therefore, is how can those utilizing compressed air effectively evaluate their assets’ performance as part of an ISO 50001 energy management system and, in doing so, grow their bottom line and minimize their negative environmental footprint.

ISO and CAGI

In this article we will discuss how to achieve actual oil-free air from your air compressor, no matter what type of air compressor it is. Air compressors of all designs turn mechanical power into pneumatic power by successively concentrating air across compression stages. A rotary screw air compressor, for example, utilizes rotating helical screws to drive air forward, increasing its pressure by reducing the volume of space the air mass takes up. Mechanical compression of this nature takes quite the force and energy to accomplish, which equates to heat generation and physical wear inside of the compressor. 

NFPA 99 Medical Air

Compressed air and gases are vital to numerous healthcare facility operations. Commonly used for breathing, sedation, and the operation of medical instruments, healthcare facilities must rely on these utilities for lifesaving and therapeutic benefits. The quality of the air and gas produced by the facility’s compressed air systems is paramount to their efficacy in promoting positive outcomes for patients.

Energy Management

ANSI /ISA–7.0.0–1996 is the globally-recognized quality standard for instrument air as defined by the Instrument Society of America. In this article, we’ll go through the Standard’s four elements of instrument air quality for use in pneumatic instruments.

Food Grade Air

Micro-aerosolized droplets are how many members of the microbial world become cross-contaminants via the air mode of transmission.  Food borne viral pathogen Hepatitis A and the ubiquitous Norwalk are very often transported via micro- aerosols. It is well known that many viral or bacterial pathogens or spoilers are transmitted via respiratory bursts [coughs/ sneezes] from people or air handling system, condensate, and splash back from floors. Strict cGMPs  can limit  and control transmission in terms of personal & environmental  hygiene.
Compressed Air Best Practices® (CABP) Magazine and the Compressed Air and Gas Institute (CAGI) cooperate to provide readers with educational materials, updates on standards and information on other CAGI initiatives. CABP recently caught up with Rick Stasyshan, Technical Director for the Compressed Air and Gas Institute (CAGI) to provide readers with some insights into the benefits of CAGI’s Verified Performance Program for refrigerated compressed air dryers.
According to the Compressed Air and Gas Institute (CAGI) and the International Organization for Standardization (ISO), the three major contaminants in compressed air are solid particles, water, and oil. CAGI promotes proper use of air compressors with various educational tools, while ISO 8573 is directed at the very specific areas of compressed air purity and test methods, which this article will address. Microorganisms are also considered a major contaminant by CAGI, but will not be discussed in this article.
Health and safety issues are a major concern in the food industry. Not only can contaminated food products endanger consumers, but they also can cause significant damage to a company’s reputation and bottom line. Contamination can come from many sources—industrial lubricants among them. With the abundance of lubricated machinery used in the food industry, lubricant dripping from a chain or escaping through a leak in a component can prove catastrophic. Even with the most prudent maintenance and operating procedures, along with a strict HACCP (hazard analysis and critical control points) plan, contamination may still occur.
Any modern food manufacturing facility employs compressed air extensively in the plant. As common as it is, the potential hazards associated with this powerful utility are not obvious and apparent. Food hygiene legislation to protect the consumer places the duty of care on the food manufacturer. For this reason, many companies often devise their own internal air quality standards based upon what they think or have been told are “best practices.” This is no wonder, as the published collections of Good Manufacturing Practices (GMPs) that relate to compressed air are nebulous and difficult to wade through.
Compressed Air Best Practices® Magazine and the Compressed Air and Gas Institute have been cooperating on educating readers on the design, features, and benefits of centrifugal compressor systems. As part of this series, Compressed Air Best Practices® (CABP) Magazine recently caught up with Rick Stasyshan, Compressed Air and Gas Institute’s (CAGI) Technical Consultant, and Ian MacLeod of CAGI member company, Ingersoll Rand. During our discussion, we reviewed some of the things readers should consider when installing a centrifugal compressor system.
ISO 22000 is a food and beverage (F&B) specific derivative of ISO 9001, a family of standards from the International Organization for Standardization that details the requirements of a quality management system. It is a quality certification that can be applied to any organization in the food chain — from packaging machine manufacturers to the actual food processing facilities.
Compressed air is used in more than 70 percent of all manufacturing activities, ranging from highly critical applications that may impact product quality to general “shop” uses. When compressed air is used in the production of pharmaceuticals, food, beverages, medical devices, and other products, there seems to be confusion on what testing needs to be performed.
Compressed Air Best Practices® (CABP) Magazine recently spoke with Rick Stasyshan, Compressed Air and Gas Institute’s (CAGI) Technical Consultant, and Mr. Neil Breedlove of CAGI's Centrifugal Compressor Section and member company, Atlas Copco Compressors, about centrifugal air compressors. Specifically, the discussion outlined how various inlet conditions can impact the performance of centrifugal air compressors.
Organizations across the world are gaining control of their energy spending by measuring and managing their utilities. In doing so, they may be using standards such as ISO 50001:2011 (energy management systems — requirements with guidance for use) to help set up an energy management system (EnMS) that will improve their energy performance. This improved performance might lower energy bills, making products more affordable in the marketplace and improving an organization’s carbon footprint.
Compressed air is a critical utility widely used throughout the food industry.  Being aware of the composition of compressed air used in your plant is key to avoiding product contamination.  Your task is to assess the activities and operations that can harm a product, the extent to which a product can be harmed, and how likely it is that product harm will occur. Assessing product contamination is a multi-step process in which you must identify the important risks, prioritize them for management, and take reasonable steps to remove or reduce the chance of harm to the product, and, in particular, serious harm to the consumer.