Industrial Utility Efficiency

End Uses

The dust is collected on the bag or fingers, and when the cake of dust is of appropriate thickness and structure, a pulse or pulses of compressed air hits or shocks the bag and knocks the cake off. This pulse may sometimes be accompanied by physical shaking and even reverse air flows, depending on design.

Capital & Maintenance Cost Avoidance When Metal Grinding Loads Rise

Plant personnel had experienced ongoing problems with its process grinder performance due to unstable compressed air pressure. This created potential problems in terms of product quality. Grinders do not work properly without the proper pressure. Additionally, plant staff wanted to address these concerns, prior to a proposed 30% increase in production, and suggested raising the header pressure from the current operating pressure of 98 psig to 125 psig. The thought behind this was if the pressure from the header to the grinder process was dropping to 63 psig, then raising the pressure to the process would give the grinders enough pressure to work through higher peak production times.  

Bearing Cooling: A Common Misapplication of Compressed Air and How to Fix It

One observation I’ve made from 30 years of working with compressed air systems is to never underestimate the ingenuity of plant personnel when it comes to misapplying compressed air. We see something new in virtually every plant we visit, but one of the more common problems we encounter involves the use of expensive air for bearing cooling. 

Reviewing Dust Collectors and Nitrogen in a Food Manufacturing Plant

This major food manufacturing plant in the Midwest uses compressed air and onsite nitrogen generation to operate multiple snack production and packaging lines. The plant spends an estimated \$430,344 annually on energy to operate its compressed air system based on an average rate of 4.5 cents per kWh.

Missed Demand-Side Opportunities Part 5 - Think Inside the Box to Achieve Savings with Cooling of Control Enclosures

In this ongoing column, we share insights into technologies that offer the opportunity to affordably and easily lower compressed air use and generate energy savings – all while achieving relatively quick payback. But finding these technologies on the production floor isn’t always easy or straightforward. In fact, there are many times when a technological solution is far less than obvious. Such is the case with cooling of control enclosures, which represent a significant area for high-energy savings with little upfront investment. Here is some out-of-the-box thinking…  check that… inside-the-box thinking… for optimizing control of enclosure cooling and coming out ahead.

Missed Demand-Side Opportunities Part 4 - Utilizing Air- Driven Venturi Vacuum Generators Efficiently

When the 18th Century Italian physicist Giovanni Venturi discovered when air is forced through a conical nozzle its velocity increases as the pressure decreases, neither he nor anyone could conceive it would ultimately spawn one of the most used and most highly controversial products in the industry today- the Venturi vacuum generator (aka, ejector).

Big Improvements at a Small Sawmill

Spruce Products Limited operates with five separate compressed air systems in their various buildings. A few years ago a sharp-eyed air compressor service representative noticed the screw compressors on site had less than optimal loading to operating hours ratios. Recognizing this was a problem, he suggested the company get in touch with their local power utility for a free compressed air scoping assessment. As a result, SPL has optimized two of their compressed air systems to-date, saving significant operating costs. One system is operating at 86% less energy consumption than previous levels.

A Pulse Jet Dust Collector Optimization Study

A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at \$0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.