Industrial Utility Efficiency    

End Uses

There are a tremendous variety of unique and creative ways people in the food industry have overcome their need for compressed air blowoffs used for cleaning, drying, cooling, conveying and overall processing. You may have seen some of them yourself. It is not uncommon to view open copper tubes, pipes with a crushed end, plugs or caps with holes drilled into them, modular flex coolant lines or nozzles designed for liquid application but blowing air.
Compressed Air Best Practices interviewed Gregory Rhames, Asset Reliability Manager/Energy Manager at Verallia. As background, Verallia is the packaging division of Saint-Gobain. Verallia employs 15,500 people globally and makes about 25 billion glass bottles and jars each year. We employ 350 people at Madera where we produce about 1 million wine, champagne and sake bottles per day.
Bottling companies and breweries, in California, are benefiting from a three-step system assessment process aimed at reducing the electrical consumption of their compressed air systems. The three-step process reduces compressed air demand in bottling lines by focusing on open blowing and idle equipment, and then improves the specic power (reducing the energy consumption) of the air compressors.
Compressed air system refinements have cut operating costs at a Milk Plant located in Winnipeg Manitoba, Canada by 62%, for annual savings of nearly $30 000. The improvements were made following a compressed air audit that recommended consolidating two compressed air systems into one, installing a variable speed drive compressor, and making a handful of additional basic improvements.
Power Smart® efficiency measures for compressed air systems at Tolko’s paper mill and sawmill at The Pas are saving the company more than $125,000 a year.  
Air-operated double-diaphragm (AODD) pumps are known for their positive attributes of handling fluids that are heavily laden with solids, abrasive materials, shear sensitive liquids (paints and coatings) and the ability to pump soft solids without damaging the product. They are also popular because they are lightweight, portable and easy to use due to their pneumatic power.
This pharmaceutical plant spends $265,100 annually on energy to operate the compressed air system at their facility. This figure will increase as electric rates are projected to be raised from their current average of 7.7 cents /kWh. The set of projects identified in the compressed air system assessment could reduce these energy costs by $139,300 per year (52%).
“Sandblasting” is one of the oldest and most used methods of metal treatment. Various abrasive materials may be loaded manually or by a vacuum system pulling the “grit” from a storage tank. A control valve then operates with the compressed air (bypassing the vacuum pump), being forced into the tank pressurizing the receiver. When the high pressure compressed air goes out the discharge line, it pulls the appropriate amount of grit with it to effectively impinge against the targeted metal surface.
This textile plant uses compressed air in their knitting, sewing, and dye house operations and needed a system designed for the significant fluctuations in demand. Compressed air demand profiles were placed into four segments; 1st shift peak demand and minimum demand, and 2nd shift peak demand and minimum demand.
Assessing payback on engineered air nozzle and blower upgrades There are a variety of means factories can use to remove or “blowoff” moisture from a package. Open tubes or drilled pipe are often viewed as simple low-cost methods. However, there are considerable drawbacks to these approaches, most notably – increased operating expense. While they may be convenient and inexpensive in the short term, these approaches often cost 5-7 times more to operate than preferred alternatives.
Most systems are sized on the supply side at many times more volume and significantly higher pressure than is actually necessary to support the real demand plus a fudge factor generally created out of fear. I am sure that had the OEM defined what is not only minimally necessary in terms of mass flow at density (pressure and temperature), but also with the intent of the highest possible efficiency, we would approach things very differently.