Industrial Utility Efficiency

Piping/Storage

Blowing a jet of compressed air at an object is a common but “poor” use of compressed air. Often the blowing nozzle is a piece of pipe on a hose with a manual valve for control. This quickly solves a production problem when a more efficient factory made nozzle is either physically too big, too expensive, or not on site when needed. Retrofitting with factory made nozzles is often ruled out by for the same reasons, and the time needed by managers and fitters to change a nozzle for often little gain in production.

Audit Improves Air Quality and Piping “Dead-Heads”

This food container plant spends \$1,028,672 annually on energy to operate the compressed air system at their facility. This figure will increase as electric rates are projected to be raised from their current average of 6.2 cents per kWh. The set of projects identified in the compressed air system assessment could reduce these energy costs by \$616,000 per year (49%). Estimated costs for completing the supply and demand-side projects total \$525,000. These costs are offset by having qualified for utility company energy incentives of \$425,000. After the incentives, this project delivered a simple ROI of two (2) months.

Kellogg’s Eggo Decreases Energy Consumption by over 675,000 kWh

This article describes a compressed air retrofit project implemented at Kellogg’s Eggo factory located in San Jose, California. Kellogg’s continues to realize both annual energy savings and quality improvements because of the upgrade. In addition, Kellogg’s received a substantial utility incentive from Pacific Gas and Electric Company, which was based on the achieved energy savings.

Matching the Supply and Demand in a Compressed Air System

Production processes get their energy from the air stored at higher pressure in the piping distribution system. The air compressors simply replenish the air that is consumed. It is an important distinction to make. The energy input in compressing the air is supplied to the connecting pipes for delivery to the various demands throughout the facility.

A View From Southeast Asia. A Pharmaceutical System Assessment

We conducted a comprehensive compressed air system assessment. Opportunities to improve the system were found in the main piping system, in reducing pressure losses in the mold machine piping, and with the high ambient temperatures found in the compressor room. We estimated energy savings of 403,500 kWh per year for a power savings of \$65,000 per year. The total projects costs were \$48,000 for a simple ROI of nine (9) months.

Compressed Air System Improvements

An industrial manufacturing plant (producing commercial water meters and valves) had engaged us to conduct an ‘on-site’ Energy & Utilities Assessment of their facility. The annual ‘spend’ for electricity, natural gas, fuels and water was about \$ 2.0 million.

Dealing with High-Volume Intermittent Demands

In many industrial plants there are one or more applications with intermittent demands of relatively high volume. One example is the use of dense phase transport systems to convey the cement. Dense phase systems can cause severe dynamic pressure fluctuations affecting quality of the end product in a plant.

Air Storage Receiver Helps Dense-Phase System

Sitting on his desk the day Brian began his new job as Plant Engineer for Carbo Ceramics’ McIntyre, GA facility was a proposal to purchase a new 150 HP air compressor as a backup machine. The facility already had six of these machines and, yes, all six ran almost continuously.

Roxane Laboratories’ System Assessment

Roxane Laboratories, Inc., a subsidiary of Boehringer Ingelheim Corporation located in Columbus, Ohio, created a world-class air system that generated \$61,314 per year in electrical energy cost savings (1,156,868 kWh), improved productivity and quality, and allowed the successful completion of a significant plant expansion.