Industrial Utility Efficiency    

System Assessment

This article discusses some experiences in using cellular connected data loggers to perform a compressed air assessment during a time when travel was restricted. While not ideal, this exercise identified huge savings for this customer.

Compressor Controls

As part of its ongoing corporate initiative to find ways to reduce its energy bills, and the costly impact on the bottom line, a cleaning products plant, located southwest of Chicago, recently focused on improving their compressed air system operation. This company is a global leader in water, hygiene and infection prevention solutions and services. This article discussed their efforts to improve the operation of their compressed air system by implementing an innovative compressed air monitoring and control system.

Piping Storage

Since completion of the system upgrade in the fall of 2020, PC Forge is on track to save an average of 1.9 million kWh and $266,000.00 per year in energy costs – and increase the production capability of its forging operation by 40%. The project also achieved a one-year payback with a $245,000 incentive from Government of Ontario’s utility Independent Electricity System Operator (IESO).

End Uses

There are a tremendous variety of unique and creative ways people in the food industry have overcome their need for compressed air blowoffs used for cleaning, drying, cooling, conveying and overall processing. You may have seen some of them yourself. It is not uncommon to view open copper tubes, pipes with a crushed end, plugs or caps with holes drilled into them, modular flex coolant lines or nozzles designed for liquid application but blowing air.

Pressure

Most industrial systems like compressed air have essentially random demand if you look at the long-term life cycle of the system. Hundreds, even thousands of independent small and large subsystems require constant or varying flow. These demands are typically not timed or synchronized with each other, so they aggregate to a fairly random flow profile, within a range. That range changes significantly when production processes change. Certainly a 2-week audit might show some patterns that appear predictable for demand A (“production”) and demand B (“non-production”) or day type, but they change over time as the plant adapts to new production systems and removes old ones. If demand was that profile forever, a lesser experienced auditor might be tempted to size one set of compressors that work perfectly for that profile but not for alternates.

Air Treatment/N2

Regular testing of pure gases helps to ensure the safety of consumers and of end products. Whether the pure gas is used directly for medical patients, or in the manufacturing of food, beverages, or pharmaceutical products, quality is of the highest importance. Inadequate levels of purity or unsafe contamination can be detrimental to the products or consumers.

Leaks

One of the best ways to reduce compressed air costs is to look for ways to reduce leakage flow, an unnecessary load that is a constant demand on the compressed air system. This flow is never-ending and occurs during production periods, and during quiet times at night or on weekends. Reducing the flow in a well-controlled compressed air system will result in the reduction of compressor energy consumption, usually by about $1,750 per every 10 cfm, and often reduces pressure loss, allowing your machines to run better. This article discusses some recent experiences in using an acoustical imaging leak detector.

Pneumatics

In manufacturing and packaging facilities that rely on pneumatics, there’s a four-letter word worse than virtually any other: leak. Unidentified air leakage and unexpected maintenance in pneumatic systems are significant sources of revenue and productivity loss but identifying the cause of leakages and preventing unforeseen downtime is typically a challenge.

Vacuum Blowers

Operating the vacuum system at higher levels (then necessary) affects the needed volumetric flow to compensate for leaks. This required compensation of volume (ACFM) must be added to the nominal production flow demand. The ambient air leak into the system will expand to the highest vacuum level, which is known as the “Expansion Ratio.”
In the absence of the control system, the air compressors were loading and unloading according to pre-set pressure bands, which forced the system to operate at higher pressures and run inefficient combinations of compressors in order to effectively match air demand. When switched on, irrespective of air demand, the control system was able to control all compressors on a single, tight pressure band and efficiently match output with demand.
At the beginning of the 20th century, biological wastewater treatment — more specifically, the activated sludge process — was developed and became widely accepted as the treatment method for municipal wastewater, helping to protect our lakes and rivers from pollutants and support public health. In 1947, the Committee on Development of Uniform Standards for Sewage Works was created by the group known as the Great Lakes – Upper Mississippi River Board of State and Provincial Public Health and Environment Managers. 
Modified Atmosphere Packaging (MAP) accounts for a significant amount of nitrogen usage in the food and beverage industry. MAP involves injecting nitrogen into beverage or food packaging to purge and displace any oxygen-containing air with nitrogen. Oxidation of lipids in food products causes rancidity. Since oxygen is replaced with dry, inert nitrogen in MAP packaging, no product oxidation will occur. The result is maximized product shelf life. 
In this article we will discuss how to achieve actual oil-free air from your air compressor, no matter what type of air compressor it is. Air compressors of all designs turn mechanical power into pneumatic power by successively concentrating air across compression stages. A rotary screw air compressor, for example, utilizes rotating helical screws to drive air forward, increasing its pressure by reducing the volume of space the air mass takes up. Mechanical compression of this nature takes quite the force and energy to accomplish, which equates to heat generation and physical wear inside of the compressor. 
There are a tremendous variety of unique and creative ways people in the food industry have overcome their need for compressed air blowoffs used for cleaning, drying, cooling, conveying and overall processing. You may have seen some of them yourself. It is not uncommon to view open copper tubes, pipes with a crushed end, plugs or caps with holes drilled into them, modular flex coolant lines or nozzles designed for liquid application but blowing air.
Most industrial systems like compressed air have essentially random demand if you look at the long-term life cycle of the system. Hundreds, even thousands of independent small and large subsystems require constant or varying flow. These demands are typically not timed or synchronized with each other, so they aggregate to a fairly random flow profile, within a range. That range changes significantly when production processes change. Certainly a 2-week audit might show some patterns that appear predictable for demand A (“production”) and demand B (“non-production”) or day type, but they change over time as the plant adapts to new production systems and removes old ones. If demand was that profile forever, a lesser experienced auditor might be tempted to size one set of compressors that work perfectly for that profile but not for alternates.
The Wonderful Pistachios and Almonds campus in Lost Hills, California is a manufacturing facility that processes and packages pistachios and almonds for the consumer market. Food processing requires extensive use of compressed air to control multiple applications ranging from actuators, valves, optical sorters, packaging equipment and plant maintenance operations. The campus has its peak season during harvest in late August/early September, but processing and packaging operations take place year-round.
Pulse jet dust collectors are common air/material separators in the food industry serving as dust collectors, bin vents, and pneumatic conveying filter/receivers.  The biggest complaint I’ve heard from plant managers and plant engineers about these is that “these collectors don’t make us any money”.  While that is true, they can COST a plant a significant amount of money if they aren’t maintained.  Wasted compressed air is one of the worst offenders, as it not only costs the plant in energy costs associated with creating and conditioning the air, but also in premature bag failure from improper cleaning, production downtime, and inefficient dust collection leading to increased housekeeping requirements, and other many issues.
One of the most satisfying parts of being a compressed air system auditor is resolving compressed air system reliability issues. This article exposes a seldom, if ever, mentioned problem that can occur when air dryers are dedicated to air compressors. It examines a real-world application and discusses the action taken to remedy the situation.
Industrial operations and manufacturers using pneumatics have access to more Industrial Internet of Things (IIoT) technology than ever before, from position sensors on cylinders to system flow sensors and edge gateways that operate independently from the machine controller with globally accepted communication protocols.