Industrial Utility Efficiency

System Assessments

Analysis of the pressure data logging showed that, while the variable speed drive compressor maintained a constant discharge pressure near 120 psi, the pressure at various critical points fell to as low as 85 psi during peak production operations. General pressure in the plants, especially Plant 2, fluctuated between 102 and 112 psi, showing that the pressure/flow control valve was not regulating properly, and that Plant 2 lacked enough general storage volume to support transient flows.  

Outsourcing Compressed Air Gives GKN Sintered Metals Peace of Mind

With an eye toward strengthening its competitive edge, GKN opted for a new approach for the compressed air it uses to power metal molding machines in addition to a variety of other applications at its manufacturing facility. After careful analysis and planning with the Total Equipment Company located in Coraopolis, Pennsylvania, GKN opted to move beyond its aging compressed air system – and instead – outsource compressed air as a utility. Doing so allowed it to free up valuable floor space, while also achieving peace of mind since it can now count on a fixed cost for a reliable compressed air supply for years to come.

A Case for KPI Measurement in Compressed Air Management

All industrial facilities use some form of compressed air, and in most, the air compressors consume a significant amount of the total energy bill. A facility with a good energy management system is likely to identify their compressed air system as a significant energy user (SEU). If the facility were using an energy management standard, such as ISO 50001, they would be required to assess and track the energy consumption of all their SEU’s. In the case of the metal processing facility, they were measuring the output of more than 250 devices within the plant, including building heaters, RTU’s, dust collectors, and also tracking the consumption of their electricity, natural gas and water. 

Bearing Cooling: A Common Misapplication of Compressed Air and How to Fix It

One observation I’ve made from 30 years of working with compressed air systems is to never underestimate the ingenuity of plant personnel when it comes to misapplying compressed air. We see something new in virtually every plant we visit, but one of the more common problems we encounter involves the use of expensive air for bearing cooling. 

Lessons Learned: Saving Energy Costs with Heated Blower Desiccant Dryers

Experienced auditors become wary when they see desiccant dryers installed in customers’ plants. These dryers are required when a plant needs instrument-quality compressed air, or when compressed air piping is exposed to freezing temperatures. However, while desiccant dryers can gain this level of quality, the energy cost of stepping up from a dewpoint of 35 oF to a level of -40 oF increases quite considerably. To attempt to reduce the energy costs of drying to these low levels, heated blower desiccant styles may be used. This article describes three common desiccant dryer types, as well as some experiences, good and bad, with heated blower types.

Reviewing Dust Collectors and Nitrogen in a Food Manufacturing Plant

This major food manufacturing plant in the Midwest uses compressed air and onsite nitrogen generation to operate multiple snack production and packaging lines. The plant spends an estimated \$430,344 annually on energy to operate its compressed air system based on an average rate of 4.5 cents per kWh.

Leveraging Data Acquisition to Drive Actionable Intelligence

In most industrial plants, data is everywhere. It resides in flow through pipes, pressure in tanks, vibration on rotating equipment, temperatures in heat exchangers, and electrical energy power consumption in motors. If we can acquire this data and make sense out of the patterns we can take actions to make our plants more efficient and reliable.

Controls Upgrade in 10 Plants Saves $977,093 Annually in Energy Costs

To address a mandate for cutting operations energy usage at facilities by 25 percent without major capital expenditures, a major manufacturing company set its sites on better control of its compressed air systems.  The project, implemented at 10 manufacturing plants over the course of three years, saves the company \$977,093 annually in energy costs – and was completed with zero out-of-pocket costs.

Compressor Controls

As part of its ongoing corporate initiative to find ways to reduce its energy bills, and the costly

Piping Storage

Since completion of the system upgrade in the fall of 2020, PC Forge is on track to save an average

End Uses

The purpose of this article is to show there isn’t always a proportionally linear relationship

Pressure

Most industrial systems like compressed air have essentially random demand if you look at the long-

Air Treatment/N2

Just as many ambient air issues with regard to the actual equipment operating environment are

Leaks

One of the best ways to reduce compressed air costs is to look for ways to reduce leakage flow, an

Pneumatics

Sustainability is a high priority for today’s consumer packaged goods (CPG) companies. Driven by

Vacuum/Blowers

Operating the vacuum system at higher levels (then necessary) affects the needed volumetric flow to