Industrial Utility Efficiency    


Assessing payback on engineered air nozzle and blower upgrades There are a variety of means factories can use to remove or “blowoff” moisture from a package. Open tubes or drilled pipe are often viewed as simple low-cost methods. However, there are considerable drawbacks to these approaches, most notably – increased operating expense. While they may be convenient and inexpensive in the short term, these approaches often cost 5-7 times more to operate than preferred alternatives.
Recently, The Kroger Company’s Indianapolis bakery identified the use of compressed air in a blow-off and conveyor gap transfer as a major source of energy loss and cost waste. According to the U.S. Department of Energy, “inappropriate use” of compressed air like blow-off produces high pressure atmosphere bleed leading to significant energy loss and unnecessary operational costs. Carrying a 10-15% efficiency return (according to the Department of Energy), compressed air applications can often be achieved more effectively, efficiently and less expensively with alternative solutions using a high flow rate and moderate pressure.
One major problem that causes severe damage or system failure for any water treatment station is water hammer shock waves. “Water Hammer” or “Hydraulic Shock” is a pressure surge or shockwave resulting when a fluid (usually a liquid but sometimes also a gas) in motion is forced to stop or change direction suddenly (momentum change). The reversed momentum then continues to multiply the further it travels before being stopped.
A new cogeneration system installed at the Budd Inlet Treatment Plant by the LOTT (Lacey, Olympia, Tumwater, and Thurston County) Clean Water Alliance late last year uses treatment by-products as fuel to generate electricity and heat energy. This renewable energy system, combined with an aeration blower retrofit currently underway at the Budd Inlet Treatment Plant, is expected to save LOTT more than $228,000 per year in utility costs.
"The Numbers Don’t Lie". It’s a popular saying everyone has heard before, applied to a variety of situations – political statistics, figures backing up an athlete’s performance and budget data. Thirty percent is a big number. Applied to the above scenarios, it could entail a landslide victory or a hitter gaining entry into the Baseball Hall of Fame. But just imagine, if the manager of a wastewater treatment facility were to trim 30 percent from their operating costs, he or she might also consider that a landslide victory of their own.  
A leading soft drink bottling manufacturer’s compressed air needs were threatening to exceed its Michigan plant’s compressed air capacity. Faced with the cost of buying a new compressor, the soft drink bottling manufacturer re-assessed their compressed air use to identify compressor and energy savings opportunities. In the audit, the soft drink bottling manufacturer identified the use of compressed air in a gap transfer as a source of compressed air and energy inefficiency.
Compressed Air Best Practices® interviewed Mr. Sid Van der Meer and Mr. Terry Nickel from Northwest Equipment Ltd in Airdrie, Canada.
There are many applications which require a low horsepower compressor built with the technology that has been proven in larger compressors. Often these situations are not addressed well by the general compressor industry.  
Air cannons, also known as air blasters or just “blasters” belong to a family of products known as flow aid devices. For over 30 years, air cannons have been used widely in industries such as cement manufacturing, electric power generation, coal, metal, and non-metal mining, and pulp and paper manufacturing.
Utilities have been cleaning their boilers for many years using either steam or high-pressure air.  In the past, when air was used, due to the size of the boilers and the reasonable quality of fuel used, a relatively small amount of cleaning was required.