Industrial Utility Efficiency    


In manufacturing and packaging facilities that rely on pneumatics, there’s a four-letter word worse than virtually any other: leak. Unidentified air leakage and unexpected maintenance in pneumatic systems are significant sources of revenue and productivity loss but identifying the cause of leakages and preventing unforeseen downtime is typically a challenge.
The project, which also involved the addition of a booster air compressor and receiver tank – along with the installation of an important pressure control valve – gives the automaker the ability to run fewer centrifugal air compressors during peak production. In so doing, the plant saves nearly 6.1 million kWh and more than $600,000 per year in energy costs. The project also qualified for a $369,374 rebate from the local utility, resulting in a six-month project payback – all while improving system reliability.
In terms of compressed air systems, it’s not unusual to see a plant with 10 to 15 air compressors, each of which is rated to provide 3,000 to 4,000 scfm of air. The air is used for everything from moving product, to powering pneumatic tools, pumps, and fans, to cleaning. There are easily 1,500 pneumatic control valves at a single plant.
In most industrial plants, data is everywhere. It resides in flow through pipes, pressure in tanks, vibration on rotating equipment, temperatures in heat exchangers, and electrical energy power consumption in motors. If we can acquire this data and make sense out of the patterns we can take actions to make our plants more efficient and reliable.
Measuring the Free Air Delivery (FAD) of an air compressor can be challenging. With a proper flow meter and some mathematics this task is manageable. This article sheds some light on how to select the flow meter and summarizes parameters to be considered in the FAD measurement task.
Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.
This article defines different aspects of regulator design and how they affect air wasted by droop. Some ways to reduce droop have be shown and some special case situations discussed. By taking care with regulator selection and installation, regulators can save large amounts of air instead of wasting it.  
Technology is available which enables a compressed air flow meter to measure not only the magnitude of the flow, but also the direction. Why is this important? In this article we will describe two case studies where bi-directional compressed air flow measurement plays a key role to come to the right conclusions. In the first case study, we will describe an electronics manufacturing plant, which has a large interconnected ring network with two air compressor rooms located in different buildings. The two air compressor rooms are about five hundred feet apart. In the second case study, the effect of compressed air flow measurement upstream of a local receiver tank is described.
Pressure regulators are everywhere compressed air is used. These simple devices, essential for safe and steady equipment operation, can be a big waster of compressed air. This article shows how with proper regulator selection, installation and setting management you can save compressed air and lower system pressures. This article looks at regulators on production equipment not central regulators or Process Flow Controllers.
Sometime in mid-2015, I received a call from a project engineer at a major plastics firm. He had a troubling issue with one of his PET bottle plants. The bottom line was this: They could not run all five high production blow-molding machines at one time—even though they were able to do so 18 months previously.
One of the statements made in the Compressed Air Challenge’s Fundamentals of Compressed Air Systems seminar is that improvements can always be made to every compressed air system, including new ones. The statement definitely applies to a Canadian pork processing facility built a few years ago. This article is based on a compressed air audit performed two years into the life of a brand new plant. The audit found numerous problems and made recommendations that helped reduce plant compressed air operating costs by 60 percent.