Industrial Utility Efficiency    


Two years ago, sales were picking up and we began operating six extrusion lines on most days. We had to bring in some portable chillers, to keep up, and we started looking at buying a larger cooling system. We wanted to get rid of the portable chillers and have room to grow into four more extrusion lines. The new system we looked at was a 100-ton system that would have cost us around $150,000 in capital and installation and with a larger monthly electricity bill. We were about to buy the new 100-ton chiller when our President, Abe Gaskins said, “Hold-on, can we replace the Liquid Ring pumps with something that doesn’t consume water”? That was our “Eureka!” moment.
The NPE 2015 International Plastics Showcase was held at the Orange County Convention Center in Orlando, Florida, March 23-27. The Show attracted 2,029 exhibitors - including Compressed Air Best Practices Magazine! Over 1,128,000 square feet of exhibition space was used – both figures breaking the all-time NPE records set in 2000. Held once every three years, NPE registered attendance was 65,810 – 19% greater than the 2012 event.
In 1979 I received a call from a business friend that had just purchased his first single-stage base cup blow machine. He was surprised to find out that he actually needed something more than 100 psi of plant air to blow bottles. This was my entry into engineering a polyethylene terephthalate (PET) compressor system. Since then, I have engineered and delivered over 350 systems—from Tobago to Tibet—and many locations in between.
The beverage industry has been using polyethylene terephthalate (PET) 2-liter plastic bottles primarily for packaging carbonated soft drinks since the 1970s. As that market has grown to encompass bottled drinking water, stretch blow-molding machines continue to produce those plastic bottles. The concept is simple: A pre-form plug is inserted into the blow molding machine heated, and compressed air is injected, “blowing” into the pre-form to create the bottle.
Compressed Air Best Practices® Magazine interviewed Michael Jones, Corporate Energy Team Leader, from Intertape Polymer Group (IPG). Intertape Polymer Group (IPG) is a manufacturer of tapes, films, woven fabrics, and complementary packaging systems for industrial and consumer use. The company operates 10 production plants and employs approximately 1,800 people. IPG has developed a robust energy management program by using ENERGY STAR energy management tools and actively participating in the ENERGY STAR partnership. IPG is receiving ENERGY STAR recognition for the growth of its energy program and leadership as a medium-sized manufacturer.
Stretch blow molding equipment requires a significant amount of energy—both compressed air and electrical—to produce bottles. Creating an effective and efficient process, as well as monitoring and maintaining optimal process settings, can result in significant energy cost reduction. These efforts will also help produce containers that meet all of the required quality standards.
This plastic extrusion factory spent an estimated $180,711 annually on energy to operate the compressed air system at their Midwestern facility. Based on the air system operating 8,760 hours per year, the group of projects recommended below could reduce these energy costs by an estimated $116,520 or 67% of current use. Estimated costs for completing the recommended projects total $20,100. This figure represents a simple payback period of 2 months.
A recently completed energy efficiency improvement programme at the Britvic Beckton bottling plant has resulted in substantial energy savings and a positive impact on the company’s carbon emissions allocation.
A plastics molding plant had engaged us to conduct an ‘on-site’ Energy Assessment of their facility. The annual ‘spend’ for electricity, natural gas, and water was about $3.2 million for this modern 275,000 square foot, fully air-conditioned facility. During the Review, several opportunities were identified and delineated in lighting, HVAC, process ventilation, the water systems and energy supply contracts. However, the most significant savings were in their compressed air system.
Treating compressed air as a true utility and outsourcing the entire process is a growing trend in the industry. If a plant does not generate their own power, provide their own water or deliver their own natural gas, then why not treat compressed air requirements in the same manner? This article will use a recent project as a case study to show the benefits one factory received by making the decision to outsource compressed air like a utility.
This facility is part of a corporation producing molded plastic products. There are many injection and extrusion molding processes. The factory was spending $94,934 annually on energy to operate their compressed air system. This system assessment detailed seven (7) project areas where yearly energy savings totaling $53,191 could be found with a minimal investment of $4,170.