Industrial Utility Efficiency    

System Assessment

Production complains about frequent work stoppages due to air supply related problems. It wants a more reliable consistent source of compressed air. Maintenance says it will need to replace an older compressor with a new one to improve the reliability and stability of the system. Maybe purchase a bigger one than currently needed in anticipation of future increases in air demands. Management wants assurances a good return on the investment will be realized from the expenditure before making a financial commitment. For comparing and evaluating alternatives, a benchmark must be established to determine the cost to run the current system. An assessment must be performed to identify the saving’s opportunities and assign dollar values. Questions about the cost of the assessment and what is to be expected in return need to be answered.

Compressor Controls

As readers of this publication know, there are many ways to save energy in industrial compressed air systems. One common supply side technology is the variable frequency drive (VFD) of the compressor. It is well-documented that positive-displacement compressors with VFDs provide cost-effective savings in comparison to inlet modulating, load-unload, and variable displacement control.

Piping Storage

Compressed air is often overlooked in energy studies. For those willing to look, however, it is a land of opportunity. Since it takes about 8 hp of electrical energy to produce 1 hp worth of work with compressed air, it is also particularly rewarding to evaluate and optimize the compressed air system in your facility. In this article, we evaluate four specific areas of a compressed air system that can provide significant energy savings.

End Uses

Compressed Air Performance Specialists (CAPS Inc.) is a compressed air consultancy located in Calgary, Alberta. In its most recent compressed air project, the company reduced a 200-hp, multi-compressor system down to a single, 100-hp variable speed drive (VSD) air compressor utilizing 75 hp of compressor energy (kWh), resulting in $70,000 in annual energy savings.

Pressure

Compressed air audits for chemical and petrochemical plants have many characteristics in common with audits in other industries, but there are some differences in the way these businesses run that impact the goals of the typical audit and how that audit is conducted. In chemical and petrochemical facilities, the reason for auditing the demand side is different than that of other industries. Additionally, there are frequently applications with opportunities for improvement that are not always seen in other industries.  

Air Treatment/N2

This northeastern U.S. automotive manufacturing facility spends $269,046 annually on energy to operate their compressed air system. This figure will increase as electric rates are raised from their current average of .019 cents per kWh. The set of projects, in this system assessment, reduce these energy costs by $110,166 or forty percent. Reliability of compressed air quality, however, is the main concern in this plant and the primary focus of this system assessment.

Leaks

This article reviews portions of an audit report commissioned to survey the condition of a compressed air system in a factory located in the U.S. The objective of this study is to determine the current operating conditions and make recommendations for improvement based upon application of industry recognized best practices. Due to article space limitations, this article will focus on portions of the over-all audit report provided to the factory.

Pneumatics

Currently, and for good reason, much attention is being focused on the conservation of energy. Compressed air, like electricity and gas, is an energy resource. It has often been referred to as the third utility. As with all energy sources, our global environment demands that it be conserved and used wisely.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
Compressed Air Performance Specialists (CAPS Inc.) is a compressed air consultancy located in Calgary, Alberta. In its most recent compressed air project, the company reduced a 200-hp, multi-compressor system down to a single, 100-hp variable speed drive (VSD) air compressor utilizing 75 hp of compressor energy (kWh), resulting in $70,000 in annual energy savings.
There is a partly true idea floating around some plant maintenance circles that “compressed air is free.” Readers of this journal know that isn’t true. But, what if non-compressed air could be seen as “free?” Is there something we can get for free from nature to reduce the cost of our compressed air? What if lower temperature intake air was nature’s gift? What if all we need is a bit of tin to duct air from a different source?
Replacing air compressors, dryers and filters with more efficient models has saved electrical costs and improved compressed air reliability at the Canada Bread plant in Winnipeg, Manitoba. In addition to this, plant personnel found some additional savings by reducing air leakage and eliminating inappropriate uses. As a result, the plant reduced its compressed air electrical costs by 58 percent and qualified for a utility incentive.
A major snack food manufacturer spends an estimated $148,220 annually on energy to operate the compressed air system at its food processing plant located in the Mid-Atlantic area.  As electric rates rise from their current average of 8 cents per kWh, their annual expenditure will only increase.
Cement production facilities have a significant number of dust collectors. Many have continuing problems with short bag life and low-pressure problems at the further points from the central air system. They often run on timers. When they try to run on demand control, they often get extreme short cycling, which causes even more bag problems. Most have gauges at the entry, on at least half of the dust collectors, and the compressed air feed lines are always the same size as the connector opening. This article reviews where these problems come from and provides some troubleshooting ideas.
As plant personnel know, repairing compressed air leaks can be an expensive, labor intensive and never-ending process. This article discusses ways plant personnel can reduce and maintain their leak rate at a lower level without repairing leaks. It discusses how pressure/flow controllers, variable speed and variable displacement compressors, automation, and addressing critical plant pressures allow plant personnel to lower the header pressure, which eliminates artificial demand and controls the leak rate. More importantly, the article brings a new dimension to the idea of turning off the air to idle equipment by focusing plant personnel’s attention on the idle time within the cycle of operating equipment.
Compressed air is often overlooked in energy studies. For those willing to look, however, it is a land of opportunity. Since it takes about 8 hp of electrical energy to produce 1 hp worth of work with compressed air, it is also particularly rewarding to evaluate and optimize the compressed air system in your facility. In this article, we evaluate four specific areas of a compressed air system that can provide significant energy savings.
In this article, we review the operating principles of both basic types of pulse-jet dust collectors — bag (sock), and reverse flow filter. We then examine the effects of various installation and accessory selection issues through several case studies, providing examples of how to fix the issues and optimize the system’s compressed air use.
Vale in Thompson, Manitoba, Canada has reconfigured a system of large turbo compressors in their mining, milling, smelting and refining operation and gained very large energy savings through a series of improvement projects. In addition, these projects qualified for some significant financial incentives from their local power utility.  Vale is a large multinational mining company with headquarters in Brazil.  Vale operations focus on the production of iron ore, coal, fertilizers, copper and nickel.  The Thompson Manitoba operations consist of mining, smelting, milling, and refining of Nickel in the 250 acre complex that employs 1,500 people.
Compressed air audits for chemical and petrochemical plants have many characteristics in common with audits in other industries, but there are some differences in the way these businesses run that impact the goals of the typical audit and how that audit is conducted. In chemical and petrochemical facilities, the reason for auditing the demand side is different than that of other industries. Additionally, there are frequently applications with opportunities for improvement that are not always seen in other industries.