Industrial Energy Savings    

Technology

During my forty years of involvement with distribution (companies that sell and service compressed air system products) as a Vice President of Sales and Marketing and Account Manager, I have witnessed a tremendous amount of change in the compressed air industry. As much as we like to reminisce about the good old days, it is quite apparent that the resources, capabilities and knowledge of distribution today are significantly better than ever before.

Air Compressors

As an industrial distributor for 65 years, C.H. Reed, Inc. has been providing ideas, concepts and sustainable solutions to help manage issues associated with three key areas of industrial plants: compressed air systems and equipment; assembly tools and ergonomic material handling; paint finishing and fluid handling equipment. Compressed air has always been a strong focus for C.H. Reed, and it’s a common thread running through all of its product families.

Air Treatment

A careful examination of a facility's compressed air system will likely reveal several opportunities to improve the performance of the compressed air system by effectively and efficiently removing moisture from the compressed air system. The Compressed Air and Gas Institute (CAGI) committed to issuing a series of articles discussing moisture in the compressed air system.

Blowers

High speed bearing technology is applicable for aeration blowers operating at much higher speeds than the typical 60Hz, 3600RPM for cast multistage units. High Speed Turbo (HST) units are usually single stage (though some utilize multiple cores) and rotate from 15,000 to 50,000RPM. At such high speeds, standard roller bearings cannot offer the industry standard L10 bearing life. Two types of bearing technologies have come to dominate the wastewater treatment market for these types of machines: airfoil and magnetically levitated. Often the two technologies are compared as equals, however, in many significant ways they are not.

Compressor Controls

EnergAir’s unrivalled expertise in compressed air management is helping to save in excess of $50,000 per year at Whirlpool Corporation’s Ottawa, Ohio production facility. Whirlpool is the largest global manufacturer of home appliances and employs almost 70,000 people in more than 60 production and technology centres around the world. The Whirlpool plant in Ottawa manufactures a market-leading range of trash compactors, chest freezers, upright freezers and refrigerators.    

Instrumentation

Compressed Air Best Practices® Magazine interviewed Pascal van Putten (CEO) of  VP Instruments.  -- We founded VP Instruments, in 1999, with the mission being to apply our experience with flow sensor technology to compressed air and gas flow applications in laboratories with a “one size fits all applications” concept. We did some trade shows and sold one unit during the first year – a tough start. So we hired a consultant who helped us re-package the technology completely. This led us to launch the VPFlowMate, in 2002, in a small and easy to use package. The company has taken off since then.

Pneumatics

Productivity is more reliable when equipment can be monitored to detect incipient failures and take corrective action before the plant goes down. But many devices, such as analog control valves, pneumatic valve terminals and field sensors, often do not offer diagnostic feedback, or it is not being used. This white paper describes how this problem is being addressed, and includes an example of pneumatic valve terminals that can monitor, among other things, open load or coil currents at the specific valve and pressure inside the valve terminal.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

There are six basic types of cooling systems that you can choose from to meet the cooling needs of your load. Each one has its strengths and weaknesses. This article was written to identify the different types of cooling systems and identify their strengths and weaknesses so that you can make an informed choice based on your needs.
Quite a number of worst-case compressed air scenarios have been encountered over the years but none may compare to the conditions that existed in a metal foundry somewhere in North America. For reasons you are about to discover, we will not reveal the name of this factory or its location, in order to protect the innocent from embarrassment.
The Department of Energy estimates that compressed air systems in the U.S. consume about 30 trillion Watt-hours of energy per year. Of all the energy used in manufacturing, compressed air systems have the greatest potential return for implementing energy efficiency practices, according to the DOE. One approach to access some of that return is to eliminate waste by producing compressed air efficiently and only in the amount demanded. Another approach is to leverage compressed air system data to assess the impact of any system changes on energy consumption and productivity.
Sullair of Houston, one of the largest North American distributors of Sullair industrial and portable diesel compressors, loves a challenge. The company designs customized air compressor packages that fit the rough and rugged world outside the walls of an industrial plant. It builds air compressor solutions that operate efficiently in extreme, harsh environments around the globe. This includes offshore or marine environments, high or low ambient conditions—any environment where a standard air compressor will not operate safely or efficiently.
Production complains about frequent work stoppages due to air supply related problems. It wants a more reliable consistent source of compressed air. Maintenance says it will need to replace an older compressor with a new one to improve the reliability and stability of the system. Maybe purchase a bigger one than currently needed in anticipation of future increases in air demands. Management wants assurances a good return on the investment will be realized from the expenditure before making a financial commitment. For comparing and evaluating alternatives, a benchmark must be established to determine the cost to run the current system. An assessment must be performed to identify the saving’s opportunities and assign dollar values. Questions about the cost of the assessment and what is to be expected in return need to be answered.
WEFTEC continued to solidify its reputation as the world-class water quality event by setting new records during it’s latest event held September 27-October 1, 2014. A total of 20,385 registrants and 1,027 companies, using 303,075 net square feet of exhibition space, participated at the New Orleans Morial Convention Center. As the host of thousands of water professionals and water companies from nearly 100 countries, WEFTEC 2014—the Water Environment Federation’s (WEF) 87th annual technical exhibition and conference—is officially the largest showing for WEF in the famed Crescent City.
This metal fabrication and machining facility produces high-quality precision-built products. Over the years, the plant has grown and there have been several expansions to the current location. The company currently spends $227,043 annually on energy to operate the compressed air system. This figure will increase as electric rates are raised from their current average of 9.8 cents per kWh.
SQF is a food safety management company that conducts audits and reports its findings on companies that voluntarily subscribe to its services. Once an audit is performed, SQF releases the data; from this data, other companies can determine who they want to use for packaging and manufacturing. To facilitate the process, SQF has released a guide that provides directives for processes used in manufacturing.
When the topic of discussion is making ice cream, the first thing that comes to mind isn’t heat, but at Nestlé’s Ice Cream factory in Tulare, California, heat is recovered from air-cooled air compressors to heat process water. “Right out of the gate, everything is pneumatic,” explains Tom Finn, Project Engineer with Nestlé Ice Cream Division. “Air cylinders and air driven motors, the process piping valves which divert, route, stop/start, and mix process fluids, our packaging machinery including rejection, cleaning and vapor removal processes, all of these rely on compressed air.
Compressed Air Best Practices® Magazine interviewed Frank Mueller (President) and Stephen Horne (Blower Product Manager) from Kaeser Compressors. Kaeser Compressors continues to grow both in the U.S. and internationally. We currently employ approximately 4800 people globally. In order to support the demand and maintain our superior quality and quality service levels, we continue to invest in people, facilities and technology.
As the population continues to grow in the United States, industrial water use will need to continue to fall to help offset the increases in public-supply water use. Water-cooled compressed air systems provide an opportunity for sustainability managers to reduce associated cooling water consumption and costs. If switching to air-cooled air compressors is not possible, understanding the costs and the alternative types of liquid cooling systems is important.