Industrial Utility Efficiency    

Air Compressors

As an industrial distributor for 65 years, C.H. Reed, Inc. has been providing ideas, concepts and sustainable solutions to help manage issues associated with three key areas of industrial plants: compressed air systems and equipment; assembly tools and ergonomic material handling; paint finishing and fluid handling equipment. Compressed air has always been a strong focus for C.H. Reed, and it’s a common thread running through all of its product families.
In 1979 I received a call from a business friend that had just purchased his first single-stage base cup blow machine. He was surprised to find out that he actually needed something more than 100 psi of plant air to blow bottles. This was my entry into engineering a polyethylene terephthalate (PET) compressor system. Since then, I have engineered and delivered over 350 systems—from Tobago to Tibet—and many locations in between.
Acrylon Plastics located in Winkler, Manitoba, Canada manufactures an extensive variety of custom plastic parts for a wide range of end use applications. Years ago changes to their production volumes increased the compressed air flows to above what their compressed air system could deliver. As a result the plant pressure would fall to low levels during production peak demands, which negatively affected sensitive compressed air powered machines. In addition to this during light plant loading conditions the air compressors would run inefficiently. Plant personnel tried a variety of strategies to deal with the plant peaks, with the most efficient solution coming as a result of installing VSD style compressors and pressure/flow control.
The beverage industry has been using polyethylene terephthalate (PET) 2-liter plastic bottles primarily for packaging carbonated soft drinks since the 1970s. As that market has grown to encompass bottled drinking water, stretch blow-molding machines continue to produce those plastic bottles. The concept is simple: A pre-form plug is inserted into the blow molding machine heated, and compressed air is injected, “blowing” into the pre-form to create the bottle.
A culture change is in the air at Sullair, a pioneer in air compressor technology, as the company celebrates its 50th anniversary. A global manufacturer of rotary screw air compressors used to power air-driven industrial equipment and tools used in manufacturing as well as the energy, mining and chemicals industries, Sullair operates five manufacturing facilities worldwide.
QCAS provides service, sales, parts and rental solutions for plant air systems, medical air systems, compressed air treatment and nitrogen generating systems. The company prides itself on being client-focused with a commitment to respond to service needs 24/7. “Our relationship with clients involves more than us just selling equipment, parts and maintenance. We provide system auditing, training, testing and information about innovations in our industry,” says Michael McCulley, president.
Quite a number of worst-case compressed air scenarios have been encountered over the years but none may compare to the conditions that existed in a metal foundry somewhere in North America. For reasons you are about to discover, we will not reveal the name of this factory or its location, in order to protect the innocent from embarrassment.
The Department of Energy estimates that compressed air systems in the U.S. consume about 30 trillion Watt-hours of energy per year. Of all the energy used in manufacturing, compressed air systems have the greatest potential return for implementing energy efficiency practices, according to the DOE. One approach to access some of that return is to eliminate waste by producing compressed air efficiently and only in the amount demanded. Another approach is to leverage compressed air system data to assess the impact of any system changes on energy consumption and productivity.
During my forty years of involvement with distribution (companies that sell and service compressed air system products) as a Vice President of Sales and Marketing and Account Manager, I have witnessed a tremendous amount of change in the compressed air industry. As much as we like to reminisce about the good old days, it is quite apparent that the resources, capabilities and knowledge of distribution today are significantly better than ever before.
Sullair of Houston, one of the largest North American distributors of Sullair industrial and portable diesel compressors, loves a challenge. The company designs customized air compressor packages that fit the rough and rugged world outside the walls of an industrial plant. It builds air compressor solutions that operate efficiently in extreme, harsh environments around the globe. This includes offshore or marine environments, high or low ambient conditions—any environment where a standard air compressor will not operate safely or efficiently.
Production complains about frequent work stoppages due to air supply related problems. It wants a more reliable consistent source of compressed air. Maintenance says it will need to replace an older compressor with a new one to improve the reliability and stability of the system. Maybe purchase a bigger one than currently needed in anticipation of future increases in air demands. Management wants assurances a good return on the investment will be realized from the expenditure before making a financial commitment. For comparing and evaluating alternatives, a benchmark must be established to determine the cost to run the current system. An assessment must be performed to identify the saving’s opportunities and assign dollar values. Questions about the cost of the assessment and what is to be expected in return need to be answered.