Industrial Energy Savings    

Boilers

Spoetzl Brewery is the nation’s fourth largest craft brewer, and although founded 102 years ago, the Shiner TX-based company uses the latest, most efficient technologies - along with its traditional, time-tested beer production protocols - to make its range of popular Shiner beer brands. Among the advanced brewing technologies Spoetzl uses are two Miura ultra-low NOx modular on-demand steam boilers, which provide multiple advantages for the unique needs of the craft-brewing industry
There are three main segments in Visteon's climate group are climate systems, powertrain cooling and engine induction. Climate systems include refrigeration compressors, fluid transport, heat exchangers, battery cooling modules, climate controls, auto defog/demist systems, and multi-zone HVAC systems. Powertrain cooling systems include heat exchangers (radiators, condensers, charge-air, exhaust-gas), airflow management, and diesel and hybrid thermal management. Engine induction includes air induction systems and intake manifolds.
Compressed Air Best Practices interviewed Richard Feustel, the Corporate Energy Manager of Briggs & Stratton.
This article reviews the 7th of the key elements for Low Cost – High Value energy savings.  Each of the previous articles reviewed types of projects which are applicable at many facilities.  The projects ranged from simple procedural actions such as turning off equipment when it is not making a product to more complex, like adding a water to air heat exchanger and extracting heat from the coolant loops to provide warmed make-up air.
Properly functioning steam traps open to release condensate and automatically close when steam is present.  Failed traps waste fuel, reduce efficiency, increase production costs and compromise the overall integrity of the steam and condensate systems.  Traps should be tested on a regular basis -- or the neglect may be quite costly.    
It is widely recognized that compressed air systems account for ten percent of all electricity and roughly sixteen percent of U.S. industrial motor system energy use. Seventy percent of all manufacturing facilities in the United States use compressed air to drive a variety of process equipment.
This article will focus on a compressed air system assessment done at a printing facility in Canada. The energy costs at the time, in Manitoba, were $0.025 per kWh and the installation was of just 65 horsepower of air compressors.
Reducing energy costs and pollution emissions involves many areas within an industrial facility.  My studies have found seven (7) key (or common) areas where low cost practical projects can be implemented.  Combined, these projects provide savings exceeding 10% of the annual energy spend with an average payback of less than one year.