Industrial Utility Efficiency    


Compressed air is often overlooked in energy studies. For those willing to look, however, it is a land of opportunity. Since it takes about 8 hp of electrical energy to produce 1 hp worth of work with compressed air, it is also particularly rewarding to evaluate and optimize the compressed air system in your facility. In this article, we evaluate four specific areas of a compressed air system that can provide significant energy savings.
A major snack food manufacturer spends an estimated $148,220 annually on energy to operate the compressed air system at its food processing plant located in the Mid-Atlantic area.  As electric rates rise from their current average of 8 cents per kWh, their annual expenditure will only increase.
Corporate announces it is participating in the ISO 50001 Energy Management certification program and issues the edict to all itsmanufacturingfacilitiesto come up with plan to reduce energy consumption by 25%. Plant management calls a meeting to discuss how this ambitious goal can be met. Since energy is one of the largest controllable components in a compressed air system, the group decides to start there. Arecentsupply side assessment conducted in conjunction with a compressed air specialist confirmed the compressors are energy hogs. Based upon the analytical simulation run by the specialist, a recommendation was made to upgrade the compressor network with a System Master Control. The project is moving forward making it good starting point in the overall energy reduction plan. What next?
Throughout its history, Watts Water Technologies has prided itself on providing plumbing, heating, and water quality solutions that are in full compliance with federal and state mandates. With the Reduction of Lead in Drinking Water Act that took effect on January 4, 2014, Watts Water continued its commitment to compliance when it set to work planning a multi-million dollar lead-free foundry in Franklin, NH.
The development of extruded aluminum piping is a recent innovation in the compressed air industry. The internal bore of this piping is smooth and corrosion resistant which makes the pressure differential characteristics of a straight run of this pipe superior to that of steel pipe. Because it is much lighter than steel pipe the installation is much easier. And the manufacturers of this style of piping have come up with various twist lock connectors to make the installation even simpler.
The Compressed Air Challenge® Fundamentals and Advanced training discuss the benefits of using central controllers to efficiently control system compressors. These systems are called “System Master” controls. Modern day System Master Controls use advanced technologies to network air compressors in a preprogrammed sequence. A properly configured network with the right size and type of trim compressor can typically hold the supply air pressure in a tight band of +/- 2 psi. Because of this capability, many users feel the application of System Master Control negates the benefit of applying Pressure-Flow Control to stabilize the plant air pressure.
The subject of compressed air piping has probably had more pages written about it than any other topic, even storage. Like many other topics in “practical” compressed air technology, a significant portion of this is controversial and often directly opposed.
In continuation of our series examining the application of storage in a compressed air system, this article will focus on another type of supply side storage concept: demand (dry) storage. Before discussing the definition, application and use of demand storage, I would like to reiterate that contrary to current thought, consideration should be given to control (wet) and demand (dry) storage being separate storage solutions based on their primary purpose
There are many ways to use storage in a compressed air system to improve the performance and repeatability of production equipment. No one method is a total solution. Some industry professionals will tell you that storage is not required for certain types of compressors. The system, however, can not afford the impact on either performance or operating costs. The alternative to applying storage is to operate at higher pressures with more power all of the time in order to support critical applications and the peak air demand experienced in the system.
While control storage was originally an integral component of a reciprocating air compressor installation, this article will only briefly explore that application. The content of this article will focus instead on rotary screw installations since the rotary screw air compressor has essentially replaced the reciprocating as the compressor of choice in industrial applications. It should also be noted that in compressed air systems where reciprocating and rotary screw air compressors are operating together, control storage should always be utilized.
This food container plant spends $1,028,672 annually on energy to operate the compressed air system at their facility. This figure will increase as electric rates are projected to be raised from their current average of 6.2 cents per kWh. The set of projects identified in the compressed air system assessment could reduce these energy costs by $616,000 per year (49%). Estimated costs for completing the supply and demand-side projects total $525,000. These costs are offset by having qualified for utility company energy incentives of $425,000. After the incentives, this project delivered a simple ROI of two (2) months.