Industrial Utility Efficiency    

Pneumatics

In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.
The event brought together technology experts, systems assessment professionals, and manufacturing leaders – all of whom shared best practices and ideas manufacturing plants can use to save energy, improve sustainability initiatives and increase the overall reliability and quality of on-site utilities.
Blood plasma is an indispensable resource in the production of life-saving medicines. It is also in high demand on global markets. To make more efficient use of this valuable commodity, Biotest AG developed a new large-scale production plant in Dreieich, Germany, for plasma fractionation capable of obtaining five instead of the previous three products from a single liter of blood plasma. As part of its strategy, Biotest AG worked with Festo to standardize automation components used at the plant, resulting in simplified installation and maintenance.
Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.
The advent of manifold-mounted, plug-in pneumatic valves has been a boon for machine builders. It allows them to mount complete valve packages in a safe and secure location on a machine. Using a D-sub connector, serial interface module, or similar single-point wiring system, all of the electrical control outputs can feed into one location on the manifold, greatly simplifying the wiring.
For more than 20 years, Hungarian-based Doroti Pack Ltd. has specialized in the production and servicing of state-of-the-art packaging machines. Their focus is on developing, manufacturing, producing and selling premium-quality packaging equipment, including their line of DorPack thermoforming machines which are often used for food products such as fresh meat, fish, dairy products, bakery ware, confectionery and ready-cooked foods. Dorati Pack chose to incorporate Aventics pneumatic components in latest thermoforming machine for optimal productivity and machine longevity.
Machines for filling milk or juice must often work around the clock. Given the critical importance of uptime, Elopak opted for Aventics food-compliant pneumatics when developing its E-PS120A - the first fully aseptic filling machine for gable top packaging. With an output of up to 12,000 cartons per hour, disruptions and downtime are not welcome with the aseptic filling machine.
Whenever we start a compressed-air energy survey there are always two key topics plant personnel feel are paramount – leaks and reducing pressure. In this installment of our series on missed demand-side opportunities we’ll address the importance of compressed air system pressure.
A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at $0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.  
In the last ten years, the design of pneumatic systems has changed dramatically, mainly due to developments in the technologies that create them. Pneumatic manufacturers’ online tools for sizing components have evolved, the fieldbus systems are ever-changing, component designs are constantly improving, and network devices such as the Industrial Internet of Things (IIoT) have reshaped the industry. All these advances play a large role in optimizing the efficiency of pneumatic systems, but the age-old practice of routine maintenance must not be overlooked. This article will focus on proper air compressor sizing, proper pneumatic component sizing and predictable preventative maintenance. 
There are three essential ways to transmit power in heavy industry today: Mechanical, Electrical and Fluid Power. Under the umbrella of fluid power, you have hydraulics and pneumatics as the two fundamental technologies. Both use a form of fluid – hydraulics as a liquid and pneumatics as a gas, to transmit power from one location to another.