Industrial Utility Efficiency    

End Uses

Manufacturers familiar with the U.S. Environmental Protection Agency (EPA) ENERGY STAR® Energy Treasure Hunts initiative know it’s a great way to save energy and natural resources – as long as it’s done right – which is why some are turning to perhaps their best asset to achieve success: their unionized workforce.
As the crisis unfolded, manufacturers and distributors of compressed air and vacuum systems took the necessary steps and precautions using guidance from the Centers for Disease Control and other agencies to minimize the spread of the virus, while continuing to support customers. At all times the top priority was the safety and wellbeing of employees and their families, as well as partners and customers.
In a strategic approach to improving its management of compressed air, the company initiated an upgrade of its compressed air system at its Midway plant. In so doing, SumiRiko Tennessee saves 2.1 million kWh and $100,000 in energy costs per year at the plant.  Additionally, lower energy use resulted in the reduction in CO2 of 800 tons per year. With a utility rebate, the project paid for itself within two years.
With an eye toward strengthening its competitive edge, GKN opted for a new approach for the compressed air it uses to power metal molding machines in addition to a variety of other applications at its manufacturing facility. After careful analysis and planning with the Total Equipment Company located in Coraopolis, Pennsylvania, GKN opted to move beyond its aging compressed air system – and instead – outsource compressed air as a utility. Doing so allowed it to free up valuable floor space, while also achieving peace of mind since it can now count on a fixed cost for a reliable compressed air supply for years to come.
Plant personnel had experienced ongoing problems with its process grinder performance due to unstable compressed air pressure. This created potential problems in terms of product quality. Grinders do not work properly without the proper pressure. Additionally, plant staff wanted to address these concerns, prior to a proposed 30% increase in production, and suggested raising the header pressure from the current operating pressure of 98 psig to 125 psig. The thought behind this was if the pressure from the header to the grinder process was dropping to 63 psig, then raising the pressure to the process would give the grinders enough pressure to work through higher peak production times.  
One observation I’ve made from 30 years of working with compressed air systems is to never underestimate the ingenuity of plant personnel when it comes to misapplying compressed air. We see something new in virtually every plant we visit, but one of the more common problems we encounter involves the use of expensive air for bearing cooling. 
By addressing inappropriate uses of compressed air and making changes to the compressed air production side of their compressed air system, a distiller of fine alcohol products reduced its energy consumption by 30%, saving $16,600 per year in energy costs - with more potential savings possible.
This major food manufacturing plant in the Midwest uses compressed air and onsite nitrogen generation to operate multiple snack production and packaging lines. The plant spends an estimated $430,344 annually on energy to operate its compressed air system based on an average rate of 4.5 cents per kWh.
On a recent project, at a polyethylene terephthalate (PET) blow-mold and filling operation, a very effective measurement plan resulted in a full synchronization of the supply side air to blow molds with significant reduction in total air use and increases in productivity and quality.  
Air Operated Double Diaphragm (AODD) Pumps are popular and versatile. Often, they also offer an excellent opportunity to lower the demand for compressed air, especially given the latest advances in controls and the energy savings to be realized.
In this ongoing column, we share insights into technologies that offer the opportunity to affordably and easily lower compressed air use and generate energy savings – all while achieving relatively quick payback. But finding these technologies on the production floor isn’t always easy or straightforward. In fact, there are many times when a technological solution is far less than obvious. Such is the case with cooling of control enclosures, which represent a significant area for high-energy savings with little upfront investment. Here is some out-of-the-box thinking…  check that… inside-the-box thinking… for optimizing control of enclosure cooling and coming out ahead.