Industrial Utility Efficiency    

Air Compressors

Today’s industrial manufacturing environment is extremely competitive, requiring companies to constantly search for cost saving opportunities and better efficiencies. In many cases, manufacturers find that centrifugal air compressors are a successful method for reducing the overall plant costs involved in supplying compressed air.
Compressed Air Best Practices interviewed Timo Pulkki (CEO), Hannu Heinonen (President, Tamturbo Inc.) and Mike Batchelor (Director of Sales Americas) from Tamturbo. Since the 1960’s, the Tampere region in Finland has been a birthplace of several air compressor innovations – many of which involved Kimmo Laine, a co-founder of Tamturbo. Mr. Laine was a leader in R&D in the air compressor business for many years since the 1960s. This included bringing a high-speed turbo air compressor to market later at Tamturbo. Working together in the 1980’s in a division of Tamrock, called Tamrotor-where Hannu Heinonen also worked, Mr. Laine met a gentleman named Jaakko Säiläkivi.
The air we breathe and the air compressors ingest is a mixture of gases, aerosols, biological material, and particulates. It’s a real mess! Particulate, for instance, is very harmful to humans, because lungs are complex oxygen separators, not filters. They tend to load up with particulate, this is harmful over time. There isn’t a sufficient “pre-filter” to prevent all harmful particulate from entering the lungs. However, humans prefer water in the air, gas, aerosol, and to a certain level, liquid form. A de-humidifier would not typically be a healthy addition to our built environments.
There are many choices of compressor technology and types of controls that can be used for variable demands. Some examples are rotary screw compressors with inlet valve control: variable speed drives: load/unload control; or centrifugal compressors with variable inlet guide vanes. However, in many cases, the efficiency of the overall compression process can be reduced significantly during lower flow demands, leading to more power per unit of air flow being delivered. It is very important to evaluate different available options and see how a plant can run most efficiently.
Larger air compressors, typically over 500 hp, in refineries, pulp and paper plants, chemical and other processing plants often have high-speed, multi-stage air compressors called “centrifugal” air compressors. As seen from a total system perspective, they are not much different than screw air compressors. They compress air to plant pressure from atmospheric conditions, and deliver it to the dryer. These types of air compressors have no internal wearing parts, besides bearings and seals, and are very reliable and efficient, at their best efficiency point. 
Knowing when to overhaul a unit is important, and there are certain signs indicating a unit needs attention. Performing routine fluid checks, taking oil samples and routinely checking for bearing vibration can unveil indicators suggesting an upcoming failure. Oil contamination with metal fragments usually indicates parts are wearing. It’s also important to take notice of airend temperature increases. If internal air compressor temperatures go up, it’s a good indicator the cooler may be failing.
The 2017 AICD Conference and Exhibition was held May 21-23 at the Grand Sierra Resort in Reno, Nevada.  The membership of the Association of Independent Distributors came together to share ideas and discuss business methods to help their businesses prosper.  “The AICD has grown by 15% with 9 new distributor members,” said AICD President Phil Kruger. “The event provides both members and vendors with excellent educational and networking opportunities designed to help grow our businesses.”
It is becoming a “best practice” to install a variable frequency drive (VFD) air compressor whenever one is replacing an old air compressor.  As a result, real systems have fixed-speed and VFD air compressors, mixed.  I have observed several VFD compressor sizing methods.  In my last article, I referred to a common method: size one VFD compressor for the whole system.  This can work.  However, if it doesn’t meet a higher peak demand, one or more of the old compressors will be started, and a mixed system results.   Another method is to replace a compressor with the same size, but with a VFD.  If the compressor that was replaced is large, a big VFD is installed.  If small, a small one.
As an end user, have you ever heard the message to put in the biggest VFD air compressor, and the system will always be reliable and efficient.  Why do an audit?  Just add up the compressors on site and put one VFD for that size or larger.  Why have the complexity of multiple compressors, storage, sequencing, etc?  Even better, put in two of them, one for the whole system, and one for back-up.  If you could wave a wand, wouldn’t that be what every system should look like?  Perfect peace and efficiency, with 100% confidence of reliability.
The 2017 Hannover Messe attracted 225,000 visitors with 75,000 coming from outside Germany. The over-arching theme of the event was the Industrial Internet of Things – or Industry 4.0, as it is known in Germany. Dr. Jochen Köckler, Member of the Managing Board at Deutsche Messe commented,“Over the past five days, Hannover has served as a global hub for all things related to Industrie 4.0. Every sector involved in the digitalization of industry was on hand to showcase its answers to the key question faced by industrial enterprises everywhere: How can I best get my company into shape for the digital future?
A complete compressed air system assessment should provide detailed information on both the supply and demand sides of the system. The supply-side refers to the equipment supplying compressed air – the air compressor, dryers, filters, piping and storage tanks.  The purpose of this article is to illustrate what information we believe a factory should receive from a supply-side system assessment and more importantly – what information a plant should always know about their compressed air system.