Industrial Utility Efficiency

Medical

The air is delivered through a distribution piping system that ends with a medical air outlet within the room. Outlet requirements per room are governed by American Institute of America (AIA) Guidelines for Design and Construction of Hospitals and Healthcare Facilities. Equipment is plugged into the medical air outlet to treat the patient. Many studies have been done determining the load required for medical air compressors. The sizing can be calculated using several methods. 

Standardization of Automation Components Pays Off at New Biotest AG Plasma Fractionation Plant

Blood plasma is an indispensable resource in the production of life-saving medicines. It is also in high demand on global markets. To make more efficient use of this valuable commodity, Biotest AG developed a new large-scale production plant in Dreieich, Germany, for plasma fractionation capable of obtaining five instead of the previous three products from a single liter of blood plasma. As part of its strategy, Biotest AG worked with Festo to standardize automation components used at the plant, resulting in simplified installation and maintenance.

Verifying Compressed Air and Gas Safety and Quality in Medical Applications

Compressed air and gases are vital to numerous healthcare facility operations. Commonly used for breathing, sedation, and the operation of medical instruments, healthcare facilities must rely on these utilities for lifesaving and therapeutic benefits. The quality of the air and gas produced by the facility’s compressed air systems is paramount to their efficacy in promoting positive outcomes for patients.

University of Manitoba Bannatyne Medical Campus Saves 15% Annually in Energy Costs

The University of Manitoba Bannatyne Campus, Canada, upgraded its compressed air system to include variable speed drive (VSD) air compressors and the use of internal heat-of-compression (HOC) drying, replacing oil-free air compressors and refrigerated dryers that reached the end of useful life. In doing so, the campus reduced annual energy consumption by 15%, improved the quality of the compressed air to modern day instrument air standards and gained additional compressed-air capacity. The local utility also awarded the medical campus an incentive of \$13,500, offsetting the cost of the initiative.  

Medical Air Monitoring and Quality Verification

Compressed Air Best Practices® interviewed Norman Davis, Jr., President of ENMET, LLC. Our products include medical verification instrumentation, compressed airline monitors, and single- and multi-gas detectors along with ambient air oxygen monitors. Many of these systems are designed to ensure compliance with NFPA 99 (National Fire Protection Agency) Medical Air Systems Guidelines and OSHA monitoring requirements for Grade D breathing air.

The Vital Role of Specialized Compressors in Helium Recovery

Helium is a precious noble gas that has become invaluable for leak detection, as well as cooling down magnets in medical equipment. This is why consumption of this essential industrial resource is increasing and its price is rising rapidly. To combat a looming shortage of this increasingly scarce resource, new methods of helium recovery are becoming more important than ever – as are specialized compressors for the same purpose.

Hospital Air System Savings

Large hospitals often use compressed air for important operational related end uses. The systems that produce this air need to supply clean and dry compressed air with a high level of reliability. These systems are not immune to efficiency problems as is the case for any compressed air system.

An Introduction to WAGD System Implementations

This article will examine in detail four of the five acceptable WAGD implementations under NFPA 99, along with some alternative ways they may be implemented. This article will not deal with passive implementations.

BSA LifeStructures

BSA LifeStructures is a full service architectural and engineering firm specializing in healthcare, higher education and technology facilities. We employ close to 260 associates and are established in two locations; Indianapolis and Chicago. Our strongest focus is on hospitals and university facilities.

The Importance of Dewpoint for Medical Air Systems

The most abundant contaminant in any compressed air system is water. This can be in either liquid or vapour form. Atmospheric air is already very wet, and becomes saturated when compressed. This water vapour will condense when the temperature drops, after the compressor, and will damage air receivers, pipework and equipment. For this reason coalescing filters and then dryers are used to remove the bulk of this water.  

Supplied Air Respiratory Protection

Hazardous breathing conditions exist in routine industrial operations, such as hospitals, abrasive blasting, paint spraying, industrial cleaning, and arc welding. In these and other operations that introduce contaminants into the workplace, supplied-air respirators are frequently used for worker protection.