Industrial Utility Efficiency

Piping/Storage

Since completion of the system upgrade in the fall of 2020, PC Forge is on track to save an average of 1.9 million kWh and $266,000.00 per year in energy costs – and increase the production capability of its forging operation by 40%. The project also achieved a one-year payback with a \$245,000 incentive from Government of Ontario’s utility Independent Electricity System Operator (IESO).

Re-engineered Compressed Air System Scores Perfect “10” at PC Forge

Since completion of the system upgrade in the fall of 2020, PC Forge is on track to save an average of 1.9 million kWh and $266,000.00 per year in energy costs – and increase the production capability of its forging operation by 40%. The project also achieved a one-year payback with a \$245,000 incentive from Government of Ontario’s utility Independent Electricity System Operator (IESO).

Wonderful Pistachios & Almonds™ Optimizes Piping and Air Compressor Automation

The Wonderful Pistachios and Almonds campus in Lost Hills, California is a manufacturing facility that processes and packages pistachios and almonds for the consumer market. Food processing requires extensive use of compressed air to control multiple applications ranging from actuators, valves, optical sorters, packaging equipment and plant maintenance operations. The campus has its peak season during harvest in late August/early September, but processing and packaging operations take place year-round.

Compressed Air System Drawings: A Picture Can Save Tens of Thousands of Dollars

There are some fundamentals when it comes to compressed air system improvements. One strategy that is overlooked is just drawing the details of whatever aspect of a system you are looking at. It is fairly common to see a misdiagnosis of some particular technical issue that would have been obvious should someone have created the drawing to describe the problem.

Air Receiver Tank Care Guide, Sizing, Safety and Storage - Part 2

Your air receiver tank works hard to keep your compressed air system running at optimal efficiency. For best results and safe operation, it’s important to make sure you have adequate storage capacity for your application. You also need to take proper care of your tank once it is installed. In this article we provide advice for air receiver tank sizing, safety and storage.

How Your Air Receiver Tank Improves System Efficiency - Part 1

An air receiver tank (sometimes called an air compressor tank or compressed air storage tank) is a type of pressure vessel that receives air from the air compressor and holds it under pressure for future use. The tanks come in a range of sizes and in both vertical and horizontal configurations. An air receiver tank provides temporary storage for compressed air. It also helps your compressed air system run more efficiently.

Milk Products Plant Finds 52 Percent Potential Savings

A food processor was having compressed air problems, so they invited a compressed air auditor into their plant for an assessment and to help them size future permanent air compressors. The plant was experiencing low air pressure and detecting water in the compressed air lines despite having a desiccant air dryer. The auditor thoroughly analyzed the compressed air system production equipment and did end-use assessment and leakage detection. This article discusses the findings leading to a potential cost savings of 52% of the current level.

Eliminate the Cost of Artificial Demand with Proper Storage and Piping

This article reviews the benefits and design considerations of controlling system pressure from the air compressor room to the production headers and selected production processes and areas. Over the last several decades, the phrase “demand-side control” has become the generic term to describe establishing a “flat line” header pressure using proper storage and an appropriate pressure regulator, or “pressure flow controller.” Use of a demand-side controller to control pressure and flow can be implemented at the entry to the production area header(s) and at selected production areas or processes.

Start with Monitoring to Achieve Compressed Air System Efficiencies

Compressed air represents one of the largest opportunities for immediate energy savings, which accounts for an average of 15% of an industrial facility’s electrical consumption. In fact, over a 10-year period, electricity can make up 76% of the total compressed air system costs. Monitoring compressed air usage, identifying compressed air waste and inefficiencies, and making investments in new compressed air equipment – including piping – are tangible ways businesses can cut their operating costs by lowering their electricity bill.

Automaker Saves $600,000 Yearly In Energy Costs & Improves Compressed Air System Reliability

The project, which also involved the addition of a booster air compressor and receiver tank – along with the installation of an important pressure control valve – gives the automaker the ability to run fewer centrifugal air compressors during peak production. In so doing, the plant saves nearly 6.1 million kWh and more than \$600,000 per year in energy costs. The project also qualified for a \$369,374 rebate from the local utility, resulting in a six-month project payback – all while improving system reliability.