Industrial Utility Efficiency    

System Assessment

One of the most satisfying parts of being a compressed air system auditor is resolving compressed air system reliability issues. This article exposes a seldom, if ever, mentioned problem that can occur when air dryers are dedicated to air compressors. It examines a real-world application and discusses the action taken to remedy the situation.

Compressor Controls

It was early summer, the air compressors were above the production floor on a mezzanine, and temperatures were heating up both outdoors and indoors. The compressed air system was comprised of three 500-horsepower centrifugal air compressors, and one 350-horsepower variable speed drive oil-free rotary screw air compressor.

Piping Storage

An air receiver tank (sometimes called an air compressor tank or compressed air storage tank) is a type of pressure vessel that receives air from the air compressor and holds it under pressure for future use. The tanks come in a range of sizes and in both vertical and horizontal configurations. An air receiver tank provides temporary storage for compressed air. It also helps your compressed air system run more efficiently.

End Uses

For Imerys S.A. there’s little question about the importance of managing dust collection systems it uses to control and reduce harmful particulates in its worldwide minerals processing facilities. And now there’s zero doubt about the tremendous energy savings it stands to save by reducing the amount of compressed air needed for these same dust collectors.

Pressure

Most industrial systems like compressed air have essentially random demand if you look at the long-term life cycle of the system. Hundreds, even thousands of independent small and large subsystems require constant or varying flow. These demands are typically not timed or synchronized with each other, so they aggregate to a fairly random flow profile, within a range. That range changes significantly when production processes change. Certainly a 2-week audit might show some patterns that appear predictable for demand A (“production”) and demand B (“non-production”) or day type, but they change over time as the plant adapts to new production systems and removes old ones. If demand was that profile forever, a lesser experienced auditor might be tempted to size one set of compressors that work perfectly for that profile but not for alternates.

Air Treatment/N2

Dew point is simply the temperature to which air must be cooled for the water vapor within to condense into dew or frost. At any temperature, there is a maximum amount of water vapor that the air can hold. This maximum amount is called the water vapor saturation pressure. If more water vapor is added beyond this point, it will result in condensation.

Leaks

Awareness and interest in leak detection only continues to grow thanks to a number of factors. What we have seen over the last 20 years is a more sustainable way of thinking, established international energy efficiency standards, reliable leak detection technology, and best practices to implement leak detection.

Pneumatics

In manufacturing and packaging facilities that rely on pneumatics, there’s a four-letter word worse than virtually any other: leak. Unidentified air leakage and unexpected maintenance in pneumatic systems are significant sources of revenue and productivity loss but identifying the cause of leakages and preventing unforeseen downtime is typically a challenge.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
Most industrial systems like compressed air have essentially random demand if you look at the long-term life cycle of the system. Hundreds, even thousands of independent small and large subsystems require constant or varying flow. These demands are typically not timed or synchronized with each other, so they aggregate to a fairly random flow profile, within a range. That range changes significantly when production processes change. Certainly a 2-week audit might show some patterns that appear predictable for demand A (“production”) and demand B (“non-production”) or day type, but they change over time as the plant adapts to new production systems and removes old ones. If demand was that profile forever, a lesser experienced auditor might be tempted to size one set of compressors that work perfectly for that profile but not for alternates.
The Wonderful Pistachios and Almonds campus in Lost Hills, California is a manufacturing facility that processes and packages pistachios and almonds for the consumer market. Food processing requires extensive use of compressed air to control multiple applications ranging from actuators, valves, optical sorters, packaging equipment and plant maintenance operations. The campus has its peak season during harvest in late August/early September, but processing and packaging operations take place year-round.
Pulse jet dust collectors are common air/material separators in the food industry serving as dust collectors, bin vents, and pneumatic conveying filter/receivers.  The biggest complaint I’ve heard from plant managers and plant engineers about these is that “these collectors don’t make us any money”.  While that is true, they can COST a plant a significant amount of money if they aren’t maintained.  Wasted compressed air is one of the worst offenders, as it not only costs the plant in energy costs associated with creating and conditioning the air, but also in premature bag failure from improper cleaning, production downtime, and inefficient dust collection leading to increased housekeeping requirements, and other many issues.
Industrial operations and manufacturers using pneumatics have access to more Industrial Internet of Things (IIoT) technology than ever before, from position sensors on cylinders to system flow sensors and edge gateways that operate independently from the machine controller with globally accepted communication protocols.
For Imerys S.A. there’s little question about the importance of managing dust collection systems it uses to control and reduce harmful particulates in its worldwide minerals processing facilities. And now there’s zero doubt about the tremendous energy savings it stands to save by reducing the amount of compressed air needed for these same dust collectors.
The AZEK Company is a producer of durable and low maintenance building materials, and like many manufacturers, it found its compressed air system to be time consuming and expensive to keep maintained. But that changed after the company replaced its outdated and faulty compressed air system with a new design that includes technically advanced air compressors, dryers, receiver tanks – as well as controls to provide better control of the entire system and achieve optimal performance.
When an automotive company added a new 200-horsepower (hp) rotary screw air compressor and accompanying dryer to a satellite building at its Chicago-area assembly plant, it needed a cost-effective way to integrate the equipment into its existing compressed air network. Doing so would allow plant personnel to easily monitor the air compressor’s performance and ensure it operates in harmony with the plant’s centrifugal air compressors. Importantly, it would contribute to efficient and reliabile air compressor operation at all times.
In manufacturing and packaging facilities that rely on pneumatics, there’s a four-letter word worse than virtually any other: leak. Unidentified air leakage and unexpected maintenance in pneumatic systems are significant sources of revenue and productivity loss but identifying the cause of leakages and preventing unforeseen downtime is typically a challenge.
As founding members of a startup company in the compressed air and gas purification and separation industry, nano-purification solutions felt a kinship with the owners, employees and mission of Death Wish Coffee Co. The kinship and nano-purification solutions’ expertise in onsite nitrogen generation led to the installation of a nitrogen generation system that contributes to the overall efficiencies and operational costs savings at the coffee roaster’s production operation in Round Lake, New York.
One of the challenges with compressed air system design is dealing with periodic large flow demands. Food and beverage manufacturers are among those process industries that often face these events. Adding in the compressed air demands of onsite packaging further adds to the task.