Industrial Utility Efficiency    

System Assessment

Many are familiar with the advances with improved technology in the compressed air supply. Such advancements as, proactive central air compressor controls to maintain optimum operation of multiple compressors to support ever changing air demands; improved drive systems such as VSD’s; magnetic bearing drives (centrifugals); and more efficient and reliable equipment taking advantage of modern manufacturing capability. These new technologies are very important in generating relative high energy cost savings, and are well promoted by the OEM equipment manufacturers.

Compressor Controls

The Pepsi bottling plant in Winnipeg, Manitoba has upgraded both their main 100 psi compressed air system and their 600 psi PET bottling system in two separate projects. The system improvements have saved the company both maintenance and electrical operating costs, and even reduced some winter heating demand.

Piping Storage

Their job is to brake the cars by gripping the wheels. They are operated either pneumatically or hydraulically, with Alton & Southern Railway’s system using the former. Considering much of Alton & Southern Railway’s compressed air piping system dated back to its 1960’s installation date, there were leaks. As of 2012, it was determined one and a half compressors were running at 100% capacity just to maintain leaks. This equated to about 1,500 cfm at a cost of roughly $180,000 in electricity annually.

End Uses

A meat processor, located in Canada, hired a consultant to assess their compressed air system as part of a company-wide energy conservation effort. The assessment and analysis showed, despite having a modern compressed air system using a VSD air compressor and pressure/flow control, the system was running inefficiently and had significant levels of leakage and inappropriate use.

Pressure

A Canadian chemical plant installed a large heated blower-purge style compressed air dryer, years ago, to condition the instrument air system against freezing temperatures.  The dryer selected was oversized for the connected air compressors and had unused on-board energy savings features.  A compressed air assessment revealed the site air compressors and compressed air dryers were running inefficiently and causing in-plant pressure problems.  Repairs to a compressed air dryer and the replacement of aging air compressors and dryers has reduced compressed air energy costs by 31 percent.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.

Leaks

Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.

Pneumatics

Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
The Pepsi bottling plant in Winnipeg, Manitoba has upgraded both their main 100 psi compressed air system and their 600 psi PET bottling system in two separate projects. The system improvements have saved the company both maintenance and electrical operating costs, and even reduced some winter heating demand.
Their job is to brake the cars by gripping the wheels. They are operated either pneumatically or hydraulically, with Alton & Southern Railway’s system using the former. Considering much of Alton & Southern Railway’s compressed air piping system dated back to its 1960’s installation date, there were leaks. As of 2012, it was determined one and a half compressors were running at 100% capacity just to maintain leaks. This equated to about 1,500 cfm at a cost of roughly $180,000 in electricity annually.
A Canadian poultry plant has upgraded their aging compressed air system for their new expansion, making it significantly more energy efficient and also solving ongoing pressure problems. The project has given the facility a much better system overall and increased system capacity enough to cover additional compressed air load. This article describes what was done to improve their compressed air system.
A large mining complex in a remote northern region of the world invited a compressed air auditor in to assess the efficiency of a problematic system. Site personnel and their air compressor supplier were concerned a system in one of the buildings was not running optimally, and wanted to know what size of compressor to install in the facility. The auditor found significant savings in this target system, but even larger potential savings were found in other ancillary systems in the complex, as part of an extra investigation conducted while at the site. Overall, the potential energy savings total more than half of a million dollars, if all recommendations are implemented.
A zinc producer spends an estimated $516,000 annually on electricity to operate the air compressors in a compressed air system at its north American plant.  The current average electric rate, at this plant, is 5 cents per kWh, and the compressed air system operates 8,760 hours per year. This system assessment recommended a group of projects able to reduce these energy costs by fifty-one percent (51%) to an annualized $270,000.  The simple payback of the project was 15 months – without taking into account potential incentive dollars from the local utility.
Great Plains has carved a global reputation for producing world-class seeding equipment since it first opened its doors in 1976. Great Plains manufactures a range of products from grain drills and planters, to compact drills and tillage equipment. They have established an international business built on expertise, knowledge and a commitment to producing products meeting the rigorous demands of the agricultural sector.
A meat processor, located in Canada, hired a consultant to assess their compressed air system as part of a company-wide energy conservation effort. The assessment and analysis showed, despite having a modern compressed air system using a VSD air compressor and pressure/flow control, the system was running inefficiently and had significant levels of leakage and inappropriate use.
While late summer may not be the time of year many of us think about heat recovery, the potential for energy savings in compressed air systems should be on our minds year-round. For those involved with the compressed air systems within International Wire Group’s facilities, energy savings is on their minds each day. This culture of continuous improvement has everyone on the lookout for savings wherever possible.
A steel distribution and processing company has upgraded and consolidated the compressed air systems in two of their distribution and processing facilities for big energy savings. The previous compressed air systems were running in modes of operation with very low efficiency. A complete replacement of the two systems with new air compressors and dryers has reduced the energy consumption significantly.
Load-sharing is an important part of a multiple centrifugal-compressor master control system. It minimizes blow-off based on the available turn-down. In addition, remote start-stop saves more energy if load floats between different ranges. Finally, adding a screw compressor and implementing a hybrid control system might save the most energy and provide the best back-up. In any case, a well-instrumented system allows engineers and operators to assess, optimize and tune the system.