Industrial Utility Efficiency    

Technology

When users consider adding an oil free air compressor to their facility, there are several factors that should go into the decision to ensure it is the right equipment for the user’s operation. Some considerations and factors can include why to choose oil free to begin with; how to properly select and size the compressor; how to adjust sizing for different cooling water conditions or different ambient temperatures; and what it will take to maintain the compressor throughout its lifespan. To lay a foundation, it is important to first understand why oil free air is important, how compressed air is used and what options are on the market.

Air Compressors

Properly sizing a compressed air system can help determine if your facility has enough air to adequately supply your production equipment. Designing a cost effective system that minimizes any interruptions to productivity requires thoughtful planning and design. Typically, the desired outcomes of such a system focus on stable pressure and efficient operation, though it is important to note that each of these elements requires a unique solution. This article will provide guidance in proper selection considerations and suggest when a centrifugal air compressor may be ideal for your needs.

Air Treatment

This article is for you if your company is purchasing nitrogen gas at 99.999% purity and you’re not sure why.  While there are many applications which do require nitrogen gas concentrated to 99.999%, they are significantly outweighed by the applications that don’t. Rather than relying on a delivery of bulk liquid or pressurized cylinders, many nitrogen users are choosing to produce a custom supply of nitrogen within their facility, and they are doing it at a fraction of the cost. Over the past decade we’ve seen a mass industry shift from delivered nitrogen supply, to nitrogen generation.

Blowers

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

A large chemical plant in Celje, Slovenia, planned to retrofit a kiln used to produce titanium dioxide. To make space for the new equipment related to the retrofit, the plant needed to relocate its high-pressure compressed air system feeding an adjacent pressing process used to dry the material before firing it in the kiln. However, a comprehensive compressed air audit using cloud-based software showed the plant did not need to relocate the system.

Instrumentation

Micro-aerosolized droplets are how many members of the microbial world become cross-contaminants via the air mode of transmission.  Food borne viral pathogen Hepatitis A and the ubiquitous Norwalk are very often transported via micro- aerosols. It is well known that many viral or bacterial pathogens or spoilers are transmitted via respiratory bursts [coughs/ sneezes] from people or air handling system, condensate, and splash back from floors. Strict cGMPs  can limit  and control transmission in terms of personal & environmental  hygiene.

Pneumatics

Electricity and compressed air play an important role in the thermal and kinetic processes for everything from mixing and extruding the ingredients, deep-freezing to -13°F (-25°C), dipping into various chocolate coatings through to final packaging. Energy efficiency is therefore right at the top of Unilever’s list of priorities. As part of the Unilever Sustainable Living Plan, this global corporation has succeeded in saving more than $186 million in energy costs from efficiency improvements in production alone since 2008.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

A large manufacturer of consumer glassware products in the North East sought a solution for injecting cold compressed air into its refractory furnace. Doing so would minimize the internal corrosion thereby extending the life of the furnace lining and their annual maintenance interval. The manufacturer opted for a unique solution from Aggreko Engineering featuring a rental, oil-free rotary screw air compressor combined with a heat exchanger and chiller.  Installed in 2019, the solution is expected to save the company $9 million monthly given the ability to maintain extend furnace maintenance from one year to two years – and boost plant uptime.
Blood plasma is an indispensable resource in the production of life-saving medicines. It is also in high demand on global markets. To make more efficient use of this valuable commodity, Biotest AG developed a new large-scale production plant in Dreieich, Germany, for plasma fractionation capable of obtaining five instead of the previous three products from a single liter of blood plasma. As part of its strategy, Biotest AG worked with Festo to standardize automation components used at the plant, resulting in simplified installation and maintenance.
In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.
The 2019 AEE World Energy Conference and Expo was held September 25-27 at the Walter E. Washington Convention Center in Washington D.C. The event featured 14+ tracks, 56 sessions, over 260 individual speakers, and 62 exhibitors.  Both Chiller & Cooling Best Practices and Compressed Air Best Practices® Magazines were pleased to be in the literature bins at the 2019 AEE World!
Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.
Maintenance is the customer of controls and energy engineering is the customer of monitoring. And I discussed potential problems that can occur when combining monitoring and control in the same system. In this article, I will get more specific about building practical systems that address both controls and monitoring.
The members of the AICD (Association of Independent Compressor Distributors) send owners and senior management to the event. AICD member companies are independent companies selling and servicing air compressors in North America. “The AICD Board is pleased to announce we have added 18 member companies in the past year alone,” said AICD President Lisa Lewis (Michigan Air Solutions). “Vendor participation is at an all-time high as we’ve added 13 new exhibitors and special networking events for vendors to interact with AICD members.”
Many OEMs of air compressors, dryers, sensors and master controls are integrating monitoring features and capabilities into their components. It would seem a no-brainer to keep it simple and use those sensors and systems for both control and monitoring. What could be simpler? 
By far the most important development in the world of screw type air compressors has been the introduction of variable speed control using electronic variable frequency drives (VFD’s). Systems that run with at least one air compressor at part load can almost always operate more efficiently if a well-controlled VFD is added to the system. But what if a system has two or more VFD units? This article discusses the challenges in controlling multiple VFD air compressors with some suggested solutions.
The team is building on engineering concepts that were used to develop the first hydraulic air compressor at Dominion Cotton Mills, Magog, Quebec, Canada, over 100 years ago. The basic principles of the HAC were then used to produce compressed air at 17 locations worldwide, including the last at Ragged Chutes near Cobalt, Ontario, Canada, over 100 years ago.  This article discusses the development the HAC in this decade and the continuing work at Laurentian University, Ontario, to modernize the concept.
Compressed air represents one of the largest opportunities for immediate energy savings, which accounts for an average of 15% of an industrial facility’s electrical consumption. In fact, over a 10-year period, electricity can make up 76% of the total compressed air system costs. Monitoring compressed air usage, identifying compressed air waste and inefficiencies, and making investments in new compressed air equipment – including piping – are tangible ways businesses can cut their operating costs by lowering their electricity bill.