Industrial Utility Efficiency


One of the best ways to reduce compressed air costs is to look for ways to reduce leakage flow, an unnecessary load that is a constant demand on the compressed air system. This flow is never-ending and occurs during production periods, and during quiet times at night or on weekends. Reducing the flow in a well-controlled compressed air system will result in the reduction of compressor energy consumption, usually by about \$1,750 per every 10 cfm, and often reduces pressure loss, allowing your machines to run better. This article discusses some recent experiences in using an acoustical imaging leak detector.

Ultrasonic Leak Detectors Help Dairy Producer Optimize Compressed Air System

A modern dairy without compressed air is nowadays no longer imaginable, and it is used primarily for driving control units and machinery. Approximately 60 percent of the compressed air generated is used for packaging lines. However, compressed air is one of the most expensive energy sources in dairies. Even in carefully maintained compressed air systems, about 20 percent of the generated energy is lost through leaks. In particular, vacuum leakages in separators result in high energy losses. A small leak can cost up to several thousands of Euros a year.

What to Expect from an Effective Compressed Air Audit

Compressed air has moved to higher visibility in the energy conservation field, and the buzzwords abound: “the fourth utility” — “your most expensive utility” — “eight times more expensive than electricity” — “a quarter-inch leak costs \$9,000 in wasted energy.” This greater awareness has also produced compressed air auditors that are springing up like summer dandelions. With audits available from many sources, it is important to understand what plant operations, engineers and maintenance managers should expect from a complete audit — or more aptly — a complete air system review.

Flow Metering Demand-Side Projects in Large Compressed Air Systems

As a reader of this journal, you are well aware that large compressed air systems often have significant wasted air — often from leaks — that represent tens of thousands of dollars of waste per year. However, it is our experience that the so-called “low-cost” measures identified often go un-repaired, while other more costly capital projects get funded. Why? With an ROI of a half year or less, they seem like IQ tests to many compressed air auditors.

Reducing Your Leak Rate Without Repairing Leaks

As plant personnel know, repairing compressed air leaks can be an expensive, labor intensive and never-ending process. This article discusses ways plant personnel can reduce and maintain their leak rate at a lower level without repairing leaks. It discusses how pressure/flow controllers, variable speed and variable displacement compressors, automation, and addressing critical plant pressures allow plant personnel to lower the header pressure, which eliminates artificial demand and controls the leak rate. More importantly, the article brings a new dimension to the idea of turning off the air to idle equipment by focusing plant personnel’s attention on the idle time within the cycle of operating equipment.

Vale Thompson Turbo Compressor Upgrades

Vale in Thompson, Manitoba, Canada has reconfigured a system of large turbo compressors in their mining, milling, smelting and refining operation and gained very large energy savings through a series of improvement projects. In addition, these projects qualified for some significant financial incentives from their local power utility.  Vale is a large multinational mining company with headquarters in Brazil.  Vale operations focus on the production of iron ore, coal, fertilizers, copper and nickel.  The Thompson Manitoba operations consist of mining, smelting, milling, and refining of Nickel in the 250 acre complex that employs 1,500 people.

Choosing Durable “No-Air-Leak” Pneumatic Tubing Fittings

Over many years of reviewing industrial compressed air production machinery, of many types and styles, there is one common thread or complaint; “push-to-connect pneumatic tubing connections/fittings are a continual source of compressed air leaks and production interruptions.”  Probably seventy-five to eighty percent of push-to-connect type tubing fittings use flexible tubing selected for lower material cost and assembly rather than an alternate appropriate hard metallic tubing.


Load-Sharing Centrifugal Compressor Control Saves Energy

This article reviews portions of an audit report commissioned to survey the condition of a compressed air system in a factory located in the U.S. The objective of this study is to determine the current operating conditions and make recommendations for improvement based upon application of industry recognized best practices. Due to article space limitations, this article will focus on portions of the over-all audit report provided to the factory.

How to Become a Compressed Air Auditor

How does one become a top notch compressed air auditor? There is very little in the way of formal schooling available to help interested persons become competent in the art of assessing compressed air systems or recommending improvement measures. As we will read in the following interview, having an excellent attitude a good aptitude, applying continuous learning techniques, using the Compressed Air Challenge’s excellent training seminars and materials, and seeking out mentorship opportunities have allowed one compressed air auditor to progress from a ”dumb kid” parts clerk to the Vice-President of Business Development for Industrial Air Centers.

Compressed Air Training; It’s a Gold Mine!

Employees of New Gold’s New Afton Copper/Silver/Gold Mine, located just West of Kamloops, British Columbia, Canada have just completed an intensive round of Compressed Air Challenge and in-house compressed air efficiency training for their employees. The awareness raised by these seminars has already led to significant improvements to system efficiency. Further efforts initiated by Andrew Cooper, an Energy Specialist hired through special support from BC Hydro’s Power Smart program are set to gain even more power savings and improve their compressed air system reliability and stability.

Food Industry Factory Saves $154,000 in Annual Energy Costs

This food industry factory, located in California, was spending \$386,533 annually on energy to operate their compressed air system. This system assessment detailed eleven (11) project areas where yearly energy savings totaling \$154,372 could be found with a investment of \$289,540. A local utility energy incentive, paying 9 cents/kWh, provided the factory with an incentive award of \$159,778. This reduced the investment to \$129,762 and provided a simple ROI of ten months on the project.